Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Macromol, Volume 3, Issue 4 (December 2023) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 9650 KiB  
Article
Molecular Mechanisms of Protein–Lipid Interactions and Protein Folding of Heterogeneous Amylin and Tau Oligomers on Lipid Nanodomains That Link to Alzheimer’s
Macromol 2023, 3(4), 805-827; https://doi.org/10.3390/macromol3040046 - 15 Dec 2023
Viewed by 360
Abstract
The disruption of cell membranes by tau and amylin oligomers is linked to amyloid diseases such as Alzheimer’s and diabetes, respectively. The recent studies suggest that misfolded tau and amylin can form neurotoxic hetero-oligomers that are structurally different from homo-oligomers. However, the molecular [...] Read more.
The disruption of cell membranes by tau and amylin oligomers is linked to amyloid diseases such as Alzheimer’s and diabetes, respectively. The recent studies suggest that misfolded tau and amylin can form neurotoxic hetero-oligomers that are structurally different from homo-oligomers. However, the molecular interactions of these hetero-oligomers with the neuronal membranes remain unclear. Using MD simulations, we have investigated the binding behaviors, membrane disruption, and protein folding of hetero-oligomers on a raft membrane containing phase-separated lipid nanodomains like those found in neurons. We discovered that the hetero-oligomers bind to the liquid-order and liquid-disorder phase boundaries of the raft membrane. The major lipid-binding sites of these interactions include the L16 and I26 residues of amylin and the N-terminal of tau. Strong disruptions of the raft domain size by the hetero-tetramer were detected. Furthermore, the hetero-dimer disrupted the saturated phospholipid orientational order to a greater extent than the individual tau or amylin monomer. In addition, the constituent tau more strongly promoted the alpha-helix to the beta-sheet transition of the constituent amylin within the hetero-dimer when compared with the amylin monomer alone. Our results provide new molecular insights into understanding the neurotoxicity of the hetero-oligomers associated with the cross-talk between amyloid diseases. Full article
Show Figures

Figure 1

23 pages, 12883 KiB  
Review
Polymer Bead Foams: A Review on Foam Preparation, Molding, and Interbead Bonding Mechanism
Macromol 2023, 3(4), 782-804; https://doi.org/10.3390/macromol3040045 - 01 Dec 2023
Viewed by 530
Abstract
The diverse physical appearances and wide density range of polymer bead foams offer immense potential in various applications and future advancements. The multiscale and multilevel structural features of bead foams involve many fundamental scientific topics. This review presents a comprehensive overview of recent [...] Read more.
The diverse physical appearances and wide density range of polymer bead foams offer immense potential in various applications and future advancements. The multiscale and multilevel structural features of bead foams involve many fundamental scientific topics. This review presents a comprehensive overview of recent progress in the preparation and molding techniques of bead foams. Firstly, it gives a comparative analysis on the bead foam characteristics of distinct polymers. Then, a summary and comparison of molding techniques employed for fabricating bead foam parts are provided. Beyond traditional methods like steam-chest molding (SCM) and adhesive-assisted molding (AAM), emerging techniques like in-mold foaming and molding (IMFM) and microwave selective sintering (MSS) are highlighted. Lastly, the bonding mechanisms behind these diverse molding methods are discussed. Full article
Show Figures

Graphical abstract

16 pages, 3599 KiB  
Article
Microwave-Assisted Chemical Purification and Ultrasonication for Extraction of Nano-Fibrillated Cellulose from Potato Peel Waste
Macromol 2023, 3(4), 766-781; https://doi.org/10.3390/macromol3040044 - 22 Nov 2023
Viewed by 604
Abstract
Nanofibrillated cellulose was extracted from potato peel waste using a fast and green method with a simple process. To extract cellulose and eliminate non-cellulosic constituents, alkaline and hydrogen peroxide treatments were performed under microwave irradiation. The nanofibrillated cellulose was extracted from purified cellulose [...] Read more.
Nanofibrillated cellulose was extracted from potato peel waste using a fast and green method with a simple process. To extract cellulose and eliminate non-cellulosic constituents, alkaline and hydrogen peroxide treatments were performed under microwave irradiation. The nanofibrillated cellulose was extracted from purified cellulose via TEMPO oxidation followed by ultrasonication. The TEM, FTIR, XRD, and TGA experiments were used to evaluate the structural, crystalline, and thermal properties of cellulose fiber and nanofiber. The chemical and FTIR analysis of bleached fibers indicates that almost all non-cellulosic components of biomass have been eliminated. The diameter of the extracted nanofibers is in the range of 4 to 22 nm. In terms of crystallinity, extracted nanocellulose had 70% crystallinity, compared to 17% for unprocessed lignocellulose fibers, which makes it an excellent choice for use as a reinforcement phase in biobased composites. Thermogravimetric analysis reveals that cellulose nanofibers are less thermally stable than potato peel pure cellulose, but it has a higher char content (28%) than pure cellulose (6%), which signifies that the carboxylate functionality acts as a flame retardant. The comparison between cellulose derived from microwave and conventional extraction methods confirmed that their impact on the removal of non-cellulosic materials is nearly identical. Full article
(This article belongs to the Topic Cellulose and Cellulose Derivatives)
Show Figures

Figure 1

12 pages, 2887 KiB  
Article
Recycling of Wood–Plastic Composites—A Reprocessing Study
Macromol 2023, 3(4), 754-765; https://doi.org/10.3390/macromol3040043 - 02 Nov 2023
Viewed by 690
Abstract
Wood–plastic composites, consisting of wood particles and a thermoplastic matrix, are common composites often used in buildings as decking boards or for similar non-load-carrying applications. As these are usually semi-finished products, a certain amount of material is available after cutting these to size, [...] Read more.
Wood–plastic composites, consisting of wood particles and a thermoplastic matrix, are common composites often used in buildings as decking boards or for similar non-load-carrying applications. As these are usually semi-finished products, a certain amount of material is available after cutting these to size, in the factory and also at installation sites. Especially for in-house waste streams in factories, the question remains whether these materials can be reprocessed without any negative influence on the materials’ properties. Therefore, the aim of this work is to investigate the influence of reprocessing on the property profile of polypropylene based wood–plastic composites. Two base formulations with 40 wt% of wood particles and two different polypropylene grades were investigated for their mechanical properties, wood particle size, color, weathering stability and water uptake. We found that most of the wood–plastic composites’ properties were not negatively influenced by the multiple processing steps; the most pronounced effect beside particle size reduction is color degradation, as the composites darken with increasing number of processing steps. In our opinion this shows, that wood–plastic composites can be recycled, especially if these are only reprocessed in smaller shares together with virgin materials. Full article
Show Figures

Figure 1

12 pages, 3936 KiB  
Article
Preparation of Polyurethane–Urea Fibers with Controlled Surface Morphology via Gel State
Macromol 2023, 3(4), 742-753; https://doi.org/10.3390/macromol3040042 - 21 Oct 2023
Viewed by 678
Abstract
It is widely known that skin irritation can be induced by interactions between polymer fibers constituting clothing and the skin, leading to skin inflammation and unfavorable dermatological reactions. Thus, significant endeavors have been directed toward ameliorating this phenomenon. This study engineered synthetic fibers [...] Read more.
It is widely known that skin irritation can be induced by interactions between polymer fibers constituting clothing and the skin, leading to skin inflammation and unfavorable dermatological reactions. Thus, significant endeavors have been directed toward ameliorating this phenomenon. This study engineered synthetic fibers with reduced potential for skin irritation. This was achieved via a strategy inspired by the inherent smoothness of silk fibers, which exhibit minimal friction and irritation against the skin. This investigation focused on urethane fibers, a class of synthetic fibers frequently used in textile applications. Hydrogel cross-linked polyurethane–urea fibers were subjected to controlled swelling in different hydrophilic mixed-solvent environments. Subsequent freeze-drying procedures were employed to yield fibers with diverse surface morphologies and encompassing features such as elevations and creases. The correlation between the compositions of the solvent mixtures used and the resulting surface morphologies of the fibers was rigorously assessed through polarized light and scanning electron microscopies. Additionally, the interplay between the degree of swelling and the tensile strength of the fabricated fibers was comprehensively analyzed. Consequently, the methodological combination of swelling and freeze-drying endowed the polyurethane–urea fibers with various surface profiles. Future studies will delve into the intricate connection between fiber surface characteristics and their potential to induce skin irritation. It is envisaged that such investigations will substantially contribute to the refinement of textile fibers designed for enhanced compatibility with the skin. Full article
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Fully Biodegradable Edible Packaging Foils on the Basis of Potato Starch–Lipid–Protein Ternary Complexes
Macromol 2023, 3(4), 723-741; https://doi.org/10.3390/macromol3040041 - 19 Oct 2023
Viewed by 784
Abstract
Fully biodegradable foils were prepared from potato starch, egg albumin, and either stearic or oleic acid. Foils prepared with oleic acid have higher tensile strength, relative elongation, thermal stability, and a more uniform macrostructure. Foils produced with stearic acid were characterized by a [...] Read more.
Fully biodegradable foils were prepared from potato starch, egg albumin, and either stearic or oleic acid. Foils prepared with oleic acid have higher tensile strength, relative elongation, thermal stability, and a more uniform macrostructure. Foils produced with stearic acid were characterized by a higher index of crystallinity than foils made with oleic acid. Functional properties of the foils can be modulated involving a sequence of blending of their components. The simultaneous blending of starch (10 weight parts of 5% aq. gel), albumin (1 weight part of liquid composed of 1 g of albumin in 7 mL of water), and stearic acid (5 weight parts of powder) provided the foil with the highest tensile strength (64.91 MPa/mm). Independently of the method of preparation, foils were white with a greenish-yellow shade. Analysis of the ATR-FTIR spectra showed that the macrostructure of the foils is built involving interactions between all three components. Full article
Show Figures

Figure 1

19 pages, 2141 KiB  
Article
Sustainable Food Packaging with Chitosan Biofilm Reinforced with Nanocellulose and Essential Oils
Macromol 2023, 3(4), 704-722; https://doi.org/10.3390/macromol3040040 - 10 Oct 2023
Viewed by 638
Abstract
Active packaging with biobased polymers aim to extend the shelf life of food and to improve the environmental sustainability of the food industry. This new concept was tested with samples of fresh poultry meat wrapped with chitosan reinforced with 2.5% of commercial nanocellulose [...] Read more.
Active packaging with biobased polymers aim to extend the shelf life of food and to improve the environmental sustainability of the food industry. This new concept was tested with samples of fresh poultry meat wrapped with chitosan reinforced with 2.5% of commercial nanocellulose (NC) incorporating 1% of essential oils (EO) from Aloysia citrodora (ACEO) and Cymbopogon citratus (CCEO). The performance of the bionanocomposites containing EOs was assessed and compared with unwrapped meat samples and samples wrapped with chitosan/NC, during a 13 day period of refrigerated storage for several physicochemical parameters related to food deterioration and microbial growth. Wrapping the meat with the chitosan/NC polymer helped to increase the shelf life of the meat. The incorporation of EOs added extra activity to the biocomposites, further delaying the meat deterioration process, by halting the lipid oxidation and the Enterobactereaceae growth until the 9th day. The composition of both EOs was similar, with the main components contributing to the increased activity of the biopolymers being geranial and neral. The performance of ACEO surpassed that of CCEO, namely on the Enterobactereaceae growth. This trend may be associated with ACEO’s higher phenolic content and the higher antioxidant activity of the compounds released by the ACEO biopolymers. Full article
(This article belongs to the Special Issue Functional Polymer-Based Materials)
Show Figures

Graphical abstract

11 pages, 1359 KiB  
Article
Stability Aspects of UV-Curable Prints on Pressure-Sensitive Labels Facestock Made from Agro-Industrial By-Products
Macromol 2023, 3(4), 693-703; https://doi.org/10.3390/macromol3040039 - 07 Oct 2023
Cited by 1 | Viewed by 500
Abstract
During its life cycle, packaging comes into contact with various substances and even those it protects. Thus, for example, oil, water, and alcohol, if spilled on the packaging, can damage its functionality. In addition to exposure to chemicals, graphic products (packaging) can be [...] Read more.
During its life cycle, packaging comes into contact with various substances and even those it protects. Thus, for example, oil, water, and alcohol, if spilled on the packaging, can damage its functionality. In addition to exposure to chemicals, graphic products (packaging) can be exposed to moisture and UV radiation, which can negatively affect their stability during transport, storage, and handling. The choice of printing substrate can directly affect the stability of prints against different degrading influences. This paper explores the stability of thermochromic (TC) and conventional offset printing inks printed on environmentally friendly printing substrates intended for packaging applications (labelling). Results have confirmed that used printing substrates and printing inks give prints good rub resistance, but somewhat lower stability in terms of ethanol, water, and UV radiation. The choice of printing substrate can directly affect the stability of prints against different degrading influences. The resistance of prints to oil cannot be clearly defined since the samples were altered with the coloration of the oil. It can only be stated that oil reduced the functionality of the TC prints given that the samples were colored by the oil itself. Full article
Show Figures

Figure 1

12 pages, 2552 KiB  
Communication
Thermal and Mechanical Properties of Guaiacol–Fatty Acid–Sulfur Composites
Macromol 2023, 3(4), 681-692; https://doi.org/10.3390/macromol3040038 - 25 Sep 2023
Viewed by 605
Abstract
A series of six composites was prepared from the reaction of lignin-derived guaiacol, fatty acids, and sulfur. In this preparation, the organic comonomers undergo C–S bond-forming reactions to establish a highly crosslinked network material in which some non-covalently incorporated sulfur species are also [...] Read more.
A series of six composites was prepared from the reaction of lignin-derived guaiacol, fatty acids, and sulfur. In this preparation, the organic comonomers undergo C–S bond-forming reactions to establish a highly crosslinked network material in which some non-covalently incorporated sulfur species are also entrapped. Both monounsaturated oleic acid and diunsaturated linoleic acid were used as fatty acid components to assess the influence of their unsaturation levels on composite properties. The ratio of organics and the proportion of sulfur (70 or 80 wt%) was also varied to assess the effect on thermal, morphological, and mechanical properties. Thermogravimetric analysis showed that composites exhibited good thermal stability up to ~220 °C. Differential scanning calorimetry revealed that the materials generally exhibit melting features for entrapped cyclo-S8, cold crystallization features for some materials, and a composition-dependent glass transition temperature. The flexural and compressive strengths of the composites revealed that some of the composites exhibit strengths significantly higher than those required of Portland cements used in residential housing fabrication and may be more sustainable structural materials. The thermal and mechanical properties could be tailored by changing the degree of unsaturation of the fatty acid comonomer or by altering the percentage of fatty acid in the monomer feed. The highest mechanical strength was achieved with greater amounts of monounsaturated oleic acid comonomer. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop