Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,389)

Search Parameters:
Journal = Insects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7576 KiB  
Article
Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi
Insects 2024, 15(1), 60; https://doi.org/10.3390/insects15010060 - 15 Jan 2024
Viewed by 109
Abstract
Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic [...] Read more.
Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic defense proteins of higher fungi. Many of these potentially interesting proteins are protease inhibitors, and some have been shown to adversely affect insects. We examined the effects of the cysteine protease inhibitors macrocypin 1, 3, and 4 from Macrolepiota procera, clitocypin from Clitocybe nebularis, and cocaprin 1 and the serine protease inhibitor cospin 1 from Coprinopsis cinerea on D. v. virgifera. We confirmed the inhibition by mycocypins of the cysteine catalytic-type proteolytic activities in gut extracts of larvae and adults. The inhibition of pGlu-Phe-Leu-hydrolyzing activity was stronger than that of Z-Phe-Arg-hydrolyzing activity. Mycocypins and cospin resisted long-term proteolytic digestion, whereas cocaprin 1 was digested. Bioassays with overlaid artificial diet revealed no effects of proteins on neonatal mortality or stunting, and no effects on adult mortality. Immersion of eggs in protein solutions had little effect on egg hatching or mortality of hatching neonates. Microscopic analysis of the peritrophic matrix and apical surface of the midguts revealed the similarity between larvae of D. v. virgifera and the chrysomelid Leptinotarsa decemlineata, which are sensitive to these inhibitors. The resistance of D. v. virgifera to fungal protease inhibitors is likely due to effective adaptation of digestive enzyme expression to dietary protease inhibitors. We continue to study unique protein complexes of higher fungi for the development of new approaches to pest control. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 3344 KiB  
Article
Development of Enzyme-Linked Immunosorbent and Immunochromatography Assays for Diagnosing Nosema ceranae Infection in Honey Bees
Insects 2024, 15(1), 59; https://doi.org/10.3390/insects15010059 - 13 Jan 2024
Viewed by 169
Abstract
Nosema ceranae (N. ceranae) infection is prevalent globally, causing a decline in bee populations and significant economic losses to apiarists. Although several methods have been proposed for diagnosing Nosema infections, limitations in these methods have hindered their broad applications. Therefore, this [...] Read more.
Nosema ceranae (N. ceranae) infection is prevalent globally, causing a decline in bee populations and significant economic losses to apiarists. Although several methods have been proposed for diagnosing Nosema infections, limitations in these methods have hindered their broad applications. Therefore, this current study aimed to develop a specialized method for diagnosing Nosema infections. To achieve this, a sandwich enzyme-linked immunosorbent assay (ELISA) and immunochromatography assay (ICG) were developed, and their effectiveness in screening and diagnosing Nosema infection was assessed. In sandwich ELISA, the combination of the monoclonal antibodies (mAb) 19B2 and biotinylated-19B2 exhibited stronger binding affinity to the antigen than did other combinations of mAbs that were tested. Furthermore, the antigen detection limit achieved with the sandwich ELISA surpassed that previously reported with Western blotting. The ICG was designed using the same antibody combination as that used in sandwich ELISA; however, the assay exhibited a lower diagnostic ability for Nosema infection than the ELISA. The diagnostic models developed in this study offer practical applications for conducting rapid nosemosis detection tests. These innovative techniques will help to improve the timely identification and management of nosemosis. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

15 pages, 1190 KiB  
Article
Optimal dsRNA Concentration for RNA Interference in Asian Citrus Psyllid
Insects 2024, 15(1), 58; https://doi.org/10.3390/insects15010058 - 12 Jan 2024
Viewed by 215
Abstract
The Asian citrus psyllid (ACP) is a citrus pest and insect vector of “Candidatus Liberibacter asiaticus”, the causal agent of citrus greening disease. Double-stranded RNA (dsRNA) biopesticides that trigger RNA interference (RNAi) offer an alternative to traditional insecticides. Standardized laboratory screening of [...] Read more.
The Asian citrus psyllid (ACP) is a citrus pest and insect vector of “Candidatus Liberibacter asiaticus”, the causal agent of citrus greening disease. Double-stranded RNA (dsRNA) biopesticides that trigger RNA interference (RNAi) offer an alternative to traditional insecticides. Standardized laboratory screening of dsRNA requires establishing the minimal effective concentration(s) that result in effective RNAi “penetrance” and trigger RNAi, resulting in one or more measurable phenotypes, herein, significant gene knockdown and the potential for mortality. In this study, knockdown was evaluated for a range of dsRNA concentrations of three ACP candidate genes, clathrin heavy chain (CHC), vacuolar ATPase subunit A (vATPase-A), and sucrose non-fermenting protein 7 (Snf7). Gene knockdown was quantified for ACP teneral adults and 3rd instar nymphs allowed a 48 h ingestion-access period (IAP) on 10, 50,100, 200, and 500 ng/µL dsRNA dissolved in 20% sucrose followed by a 5-day post-IAP on orange jasmine shoots. Significant gene knockdown (p < 0.05) in ACP third instar nymphs and adults ranged from 12–34% and 18–39%, 5 days post-IAP on dsRNA at 10–500 and 100–500 ng/µL, respectively. The threshold concentration beyond which no significant gene knockdown and adult mortality was observed post-48 h IAP and 10-day IAP, respectively, was determined as 200 ng/µL, a concentration indicative of optimal RNAi penetrance. Full article
(This article belongs to the Collection Psyllid Vectors: From Genetics to Pest Integrated Management)
Show Figures

Figure 1

21 pages, 8346 KiB  
Article
The First Two Complete Mitochondrial Genomes for the Subfamily Meligethinae (Coleoptera: Nitidulidae) and Implications for the Higher Phylogeny of Nitidulidae
Insects 2024, 15(1), 57; https://doi.org/10.3390/insects15010057 - 12 Jan 2024
Viewed by 199
Abstract
The phylogenetic status of the family Nitidulidae and its sister group relationship remain controversial. Also, the status of the subfamily Meligethinae is not fully understood, and previous studies have been mainly based on morphology, molecular fragments, and biological habits, rather than the analysis [...] Read more.
The phylogenetic status of the family Nitidulidae and its sister group relationship remain controversial. Also, the status of the subfamily Meligethinae is not fully understood, and previous studies have been mainly based on morphology, molecular fragments, and biological habits, rather than the analysis of the complete mitochondrial genome. Up to now, there has been no complete mitochondrial genome report of Meligethinae. In this study, the complete mitochondrial genomes of Meligethinus tschungseni and Brassicogethes affinis (both from China) were provided, and they were compared with the existing complete mitochondrial genomes of Nitidulidae. The phylogenetic analysis among 20 species of Coleoptera was reconstructed via PhyloBayes analysis and Maximum likelihood (ML) analysis, respectively. The results showed that the full lengths of Meligethinus tschungseni and Brassicogethes affinis were 15,783 bp and 16,622 bp, and the AT contents were 77% and 76.7%, respectively. Each complete mitochondrial genome contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a control region (A + T-rich region). All the PCGs begin with the standard start codon ATN (ATA, ATT, ATG, ATC). All the PCGs terminate with a complete terminal codon, TAA or TAG, except cox1, cox2, nad4, and nad5, which terminate with a single T. Furthermore, all the tRNAs have a typical clover-leaf secondary structure except trnS1, whose DHU arm is missing in both species. The two newly sequenced species have different numbers and lengths of tandem repeat regions in their control regions. Based on the genetic distance and Ka/Ks analysis, nad6 showed a higher variability and faster evolutionary rate. Based on the available complete mitochondrial genomes, the results showed that the four subfamilies (Nitidulinae, Meligethinae, Carpophilinae, Epuraeinae) of Nitidulidae formed a monophyletic group and further supported the sister group relationship of Nitidulidae + Kateretidae. In addition, the taxonomic status of Meligethinae and the sister group relationship between Meligethinae and Nitidulinae (the latter as currently circumscribed) were also preliminarily explored. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

13 pages, 3713 KiB  
Article
Mass-Rearing Conditions Do Not Always Reduce Genetic Diversity: The Case of the Mexican Fruit Fly, Anastrepha ludens (Diptera: Tephritidae)
Insects 2024, 15(1), 56; https://doi.org/10.3390/insects15010056 - 12 Jan 2024
Viewed by 157
Abstract
The application of the sterile insect technique (SIT) requires the adaptation of insects to mass-rearing conditions. It is generally accepted that this adaptation may include a reduction in genetic diversity and an associated loss of desirable characteristics for the effective performance of sterile [...] Read more.
The application of the sterile insect technique (SIT) requires the adaptation of insects to mass-rearing conditions. It is generally accepted that this adaptation may include a reduction in genetic diversity and an associated loss of desirable characteristics for the effective performance of sterile insects in the field. Here, we compare the genetic diversity of two mass-reared strains of the Mexican fruit fly, Anastrepha ludens, and a wild (WIL) population collected near Tapachula, Mexico, using seven DNA microsatellites as molecular genetic markers. The mass-reared strains were a bisexual laboratory strain (LAB) with approximately 130 generations under mass-rearing and a genetic sexing strain, Tapachula-7 (TA7), also under mass-rearing for 100 generations. Our results revealed an overall low level of genetic differentiation (approximately 15%) among the three strains, with the LAB and WIL populations being genetically most similar and TA7 most genetically differentiated. Although there were some differences in allele frequencies between strains, our results show that overall, the adaptation to mass-rearing conditions did not reduce genetic variability compared to the wild sample in terms of heterozygosity or allelic richness, nor did it appear to alter the level of inbreeding with respect to the wild populations. These results are contrary to the general idea that mass-rearing always results in a reduction in genetic diversity. Overall, our findings can contribute to a better understanding of the impact that adaptation to mass-rearing conditions may have on the genetic make-up of strains. Full article
(This article belongs to the Special Issue Genetics and Ecological Evolution of Dipteran Pest Species)
Show Figures

Graphical abstract

27 pages, 30228 KiB  
Article
Anatolian Short-Horned Grasshoppers Unveiled: Integrating Biogeography and Pest Potential
Insects 2024, 15(1), 55; https://doi.org/10.3390/insects15010055 (registering DOI) - 12 Jan 2024
Viewed by 176
Abstract
Biogeographically, Anatolia harbours a rich diversity of short-horned grasshoppers (Orthoptera, Caelifera). The number of species recorded from Anatolia so far stands at 300. They inhabit diverse habitats ranging from arid Eremial to Euro-Siberian-like montane meadows, aligning with the topographical and climatological heterogeneity of [...] Read more.
Biogeographically, Anatolia harbours a rich diversity of short-horned grasshoppers (Orthoptera, Caelifera). The number of species recorded from Anatolia so far stands at 300. They inhabit diverse habitats ranging from arid Eremial to Euro-Siberian-like montane meadows, aligning with the topographical and climatological heterogeneity of Anatolia. Alongside some swarming species, the pest potential of several pullulating species needs attention. This is especially important concerning global warming, a scenario expected to be more severe in the Northern Mediterranean Basin in general and Anatolia specifically. A faunal list of biogeographic Anatolia, the area extending from the Aegean Sea in the west to the intermountain basin of the Caucasus in the northeast, the lowlands of Lake Urmia in the east, and Mesopotamia in the southeast, was developed. The recorded species were classified according to the phytogeographical provinces of Anatolia. Distributions of the species with the potential for pullulating were modelled using ecological-niche-modelling approaches for the present and future. The results have the potential to lead to the development of a concept that merges biogeography and the pest potential of certain Anatolian grasshopper species. Our results reveal the following: (i) Acrididae and Pamphagidae are the most diverse families represented in Anatolia; (ii) roughly 40% of Caelifera and 71% of Pamphagidae are endemics, suggesting Anatolia is a biodiversity hotspot; (iii) according to Caelifera diversity, the phytogeographical provinces of Anatolia follow an order of Irano-Anatolia, Euro-Siberia, Mediterranean, and Mesopotamia; and (iv) based on ecological modelling and personal observations, Dociostaurus maroccanus, Locusta migratoria, Calliptamus italicus, Heteracris pterosticha, Notostaurus anatolicus, Oedipoda miniata, and O. schochii should be monitored regarding their pest potential. Full article
Show Figures

Figure 1

11 pages, 1675 KiB  
Communication
Effect of Acetamiprid, a Neonicotinoid Insecticide, on Locomotor Activity of the American Cockroach
Insects 2024, 15(1), 54; https://doi.org/10.3390/insects15010054 - 12 Jan 2024
Viewed by 170
Abstract
Toxicological studies have shown that the American cockroach Periplaneta americana (Linnaeus) is a classical model for studying the mode of action of commonly used insecticides. In a previous study, we demonstrated that thiamethoxam and clothianidin decreased locomotor activity in an open-field-like apparatus. Here, [...] Read more.
Toxicological studies have shown that the American cockroach Periplaneta americana (Linnaeus) is a classical model for studying the mode of action of commonly used insecticides. In a previous study, we demonstrated that thiamethoxam and clothianidin decreased locomotor activity in an open-field-like apparatus. Here, we tested the effect of the neonicotinoid acetamiprid when applied orally, topically, or injected into the haemolymph. We found that acetamiprid was also able to impair locomotor activity in the open-field-like apparatus. When treated with acetamiprid, a strong alteration in locomotor activity was observed 1 h, 24 h, and 48 h after haemolymph and topical applications. Oral application induced an impairment of locomotor activity at 24 h and 48 h. A comparison of the present data with our previously published results showed that neonicotinoids were more active when injected into the haemolymph compared to oral and topical applications. These findings increased our understanding of the effect of neonicotinoid insecticides on insect locomotor activity, and demonstrated that the cyano-substituted neonicotinoid, acetamiprid, was able to alter cockroach locomotor activity. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

9 pages, 557 KiB  
Article
Fatal Attraction: Argiope Spiders Lure Male Hemileuca Moth Prey with the Promise of Sex
Insects 2024, 15(1), 53; https://doi.org/10.3390/insects15010053 - 12 Jan 2024
Viewed by 240
Abstract
Predator–prey coevolution, particularly chemo-ecological arms races, is challenging to study as it requires the integration of behavioral, chemical ecology, and phylogenetic studies in an amenable system. Moths of the genus Hemileuca (Saturniidae) are colorful, diurnal, and fast and often fly well above the [...] Read more.
Predator–prey coevolution, particularly chemo-ecological arms races, is challenging to study as it requires the integration of behavioral, chemical ecology, and phylogenetic studies in an amenable system. Moths of the genus Hemileuca (Saturniidae) are colorful, diurnal, and fast and often fly well above the vegetation canopy layer. However, several Hemileuca species have been reported as being captured in spider webs, specifically Argiope species (Araneidae). Female Hemileuca are known to produce mating pheromones and spiders of the Araneidae family are known to use pheromone lures to attract lepidopteran prey. We presented primarily female Argiope aurantia, which are attractive to male Anisota pellucida (Saturniidae), to different populations of Hemileuca species across the southern and western United States to categorize the homing response strength of different species of male Hemileuca. When we mapped these Argiope lure attraction strength categories onto the most recently published Hemileuca phylogeny, the behavioral patterns suggested a potential co-evolutionary arms race between predators and prey. Males of Hemileuca maia, H. grotei, and H. nevadensis (all in the same clade) appeared to have no attraction to A. aurantia, while H. magnifica and H. hera (within a different, separate clade) appeared to be strongly attracted to A. aurantia, but H. nuttalli (also within the H. hera and H. magnifica clade) displayed no attraction. Furthermore, Hemileuca eglanterina (yet a different clade) displayed strong, weak, and no attraction to A. aurantia, depending on the population. These apparent clade partitioning patterns of Argiope lure effectiveness and within-species variation in Hemileuca lure responses suggest a predator–prey coevolutionary history of measures and countermeasures. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

13 pages, 657 KiB  
Article
Integration of the Generalist Predator Nabis americoferus (Hemiptera: Nabidae) in a Greenhouse Strawberry Biocontrol Program with Phytoseiid Predatory Mites and the Entomopathogenic Fungus Beauveria bassiana
Insects 2024, 15(1), 52; https://doi.org/10.3390/insects15010052 - 11 Jan 2024
Viewed by 621
Abstract
In strawberry production, western flower thrips (WFT) and two-spotted spider mites (TSSM) inflict feeding damage and reduce the yield. Biological control for these pests often includes phytoseiid predatory mites and entomopathogenic fungi. The hemipteran family Nabidae have been reported as prominent predators in [...] Read more.
In strawberry production, western flower thrips (WFT) and two-spotted spider mites (TSSM) inflict feeding damage and reduce the yield. Biological control for these pests often includes phytoseiid predatory mites and entomopathogenic fungi. The hemipteran family Nabidae have been reported as prominent predators in open-field strawberry. Nabis americoferus Carayon is a new biocontrol agent developed in Canada. This study examined if this species was a good candidate for integration with biological control for greenhouse strawberry production. The laboratory trials showed that Phytoseiulus persimilis Athias-Henriot and Amblyseius swirskii Athias-Henriot were compatible with N. americoferus, especially when alternative food was available. In contrast, the nabid was not compatible with the Beauveria bassiana (Balsamo) GHA strain. A greenhouse cage study was conducted to determine if it was beneficial to add N. americoferus to the phytoseiid-mites-based biological control program for WFT and TSSM in greenhouse strawberry. The release of N. americoferus on a banker plant together with the placement of sachets of Neoseiulus cucumeris (Oudemans) and Neoseiulus californicus (McGregor) was beneficial, not only potentially reducing the number of sachet applications, but also providing better pest control than phytoseiid mites alone. Neither the phytoseiids nor the N. americoferus numbers were significantly affected by the presence of each other. Full article
(This article belongs to the Special Issue Diversity and Abundance of Predators and Parasitoids of Insect Pests)
Show Figures

Graphical abstract

14 pages, 2468 KiB  
Article
Long-Term Chironomid Emergence at a Karst Tufa Barrier in Plitvice Lakes National Park, Croatia
Insects 2024, 15(1), 51; https://doi.org/10.3390/insects15010051 - 11 Jan 2024
Viewed by 219
Abstract
Chironomids are found in all types of freshwater habitats; they are a ubiquitous and highly diverse group of aquatic insects. Plitvice Lakes National Park is the oldest and largest national park in Croatia and consists of numerous and diverse freshwater habitats, making the [...] Read more.
Chironomids are found in all types of freshwater habitats; they are a ubiquitous and highly diverse group of aquatic insects. Plitvice Lakes National Park is the oldest and largest national park in Croatia and consists of numerous and diverse freshwater habitats, making the area an ideal location for long-term research into the chironomid emergence patterns and phenology. The main objectives of this study were to identify the composition of the chironomid community, determine the phenology of the identified species, and assess the main factors influencing their emergence in Plitvice Lakes. During 14 years of research, more than 13,000 chironomids belonging to more than 80 species were recorded. The most abundant species was found to be Parametriocnemus stylatus. The highest abundance of chironomids was recorded in lotic habitats with faster water current over substrates of moss and algae and pebbles. Water temperature and the availability of organic matter were found to be the main factors that drive chironomid emergence at the tufa barrier studied. In the last years of this study, a prolonged flight period was observed. Although this is not statistically significant (at this stage of the study), it could be due to a higher water temperature in winter. Full article
(This article belongs to the Special Issue Aquatic Insects: Diversity, Ecology and Evolution)
Show Figures

Figure 1

14 pages, 8158 KiB  
Article
Characterization of Four Complete Mitogenomes of Monolepta Species and Their Related Phylogenetic Implications
Insects 2024, 15(1), 50; https://doi.org/10.3390/insects15010050 - 11 Jan 2024
Viewed by 225
Abstract
Monolepta is one of the diverse genera in the subfamily Galerucinae, including 708 species and 6 sub-species worldwide. To explore the information on the mitogenome characteristics and phylogeny of the section “Monoleptites”, especially the genus Monolepta, we obtained the newly completed mitochondrial [...] Read more.
Monolepta is one of the diverse genera in the subfamily Galerucinae, including 708 species and 6 sub-species worldwide. To explore the information on the mitogenome characteristics and phylogeny of the section “Monoleptites”, especially the genus Monolepta, we obtained the newly completed mitochondrial genomes (mitogenomes) of four Monolepta species using high-throughput sequencing technology. The lengths of these four new mitochondrial genomes are 16,672 bp, 16,965 bp, 16,012 bp, and 15,866 bp in size, respectively. All four mitochondrial genomes include 22 transfer RNA genes (tRNAs), 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), and one control region, which is consistent with other Coleoptera. The results of the nonsynonymous with synonymous substitution rates showed that ND6 had the highest evolution rate, while COI displayed the lowest evolution rate. The substitution saturation of three datasets (13 PCGs_codon1, 13 PCGs_codon2, 13 PCGs_codon3) showed that there was no saturation across all datasets. Phylogenetic analyses based on three datasets (ND1, 15 genes of mitogenomes, and 13 PCGs_AA) were carried out using maximum likelihood (ML) and Bayesian inference (BI) methods. The results showed that mitogenomes had a greater capacity to resolve the main clades than the ND1 gene at the suprageneric and species levels. The section “Monoleptites” was proven to be a monophyletic group, while Monolepta was a non-monophyletic group. Based on ND1 data, the newly sequenced species whose antennal segment 2 was shorter than 3 were split into several clades, while, based on the mitogenomic dataset, the four newly sequenced species had close relationships with Paleosepharia. The species whose antennal segment 2 was as long as 3 were split into two clades, which indicated that the characteristic of “antennal segment 2 as long as 3” of the true “Monolepta” evolved multiple times in several subgroups. Therefore, to explore the relationships among the true Monolepta, the most important thing is to perform a thorough revision of Monolepta and related genera in the future. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Graphical abstract

12 pages, 1148 KiB  
Article
Fungal Communities Associated with Siricid Wood Wasps: Focus on Sirex juvencus, Urocerus gigas, and Tremex fuscicornis
Insects 2024, 15(1), 49; https://doi.org/10.3390/insects15010049 - 11 Jan 2024
Viewed by 247
Abstract
We investigated the diversity and occurrence of wood wasps in Lithuania and determined communities of associated fungi. Trapping of wood wasps resulted in three different species, including Sirex juvencus, Urocerus gigas, and Tremex fuscicornis. Fungal culturing from adult females of [...] Read more.
We investigated the diversity and occurrence of wood wasps in Lithuania and determined communities of associated fungi. Trapping of wood wasps resulted in three different species, including Sirex juvencus, Urocerus gigas, and Tremex fuscicornis. Fungal culturing from adult females of T. fuscicornis mainly resulted in fungi from the genera Penicillium and Trichoderma. High-throughput sequencing of ITS2 rDNA resulted in 59,797 high-quality fungal sequences, representing 127 fungal OTUs. There were 93 fungal OTUs detected in U. gigas, 66 in S. juvencus, and 10 in T. fuscicornis. The most common fungi were Fusarium sporotrichioides (63.1% of all fungal sequences), Amylostereum chailletii (14.9%), Penicillium crustosum (7.8%), Microascus sp. 2261_4 (5.0%), and Pithoascus ater (2.1%). Among these, only A. chailletii was found in all three insect species with the highest relative abundance in U. gigas (15.2%), followed by S. juvencus (7.7%), and the lowest in T. fuscicornis (0.3%) (p < 0.0003). Correspondence analysis of fungal communities showed a distant placement of different species of wood wasps, indicating that fungal communities in each of these were largely different. In conclusion, the study showed that the economically important tree pathogen A. chailletii was among the most common fungal OTUs vectored by siricid wood wasps. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 1425 KiB  
Article
Efficacy of Conventional and Biorational Insecticides against the Invasive Pest Thrips parvispinus (Thysanoptera: Thripidae) under Containment Conditions
Insects 2024, 15(1), 48; https://doi.org/10.3390/insects15010048 - 10 Jan 2024
Viewed by 383
Abstract
In 2020, the invasive Thrips parvispinus (Karny) was first detected in Florida, United States. In response to the implemented regulatory restrictions, we conducted laboratory experiments under containment conditions. Thrips larvae and adults were exposed to 32 products (conventional and biorational insecticides) either directly [...] Read more.
In 2020, the invasive Thrips parvispinus (Karny) was first detected in Florida, United States. In response to the implemented regulatory restrictions, we conducted laboratory experiments under containment conditions. Thrips larvae and adults were exposed to 32 products (conventional and biorational insecticides) either directly or indirectly. Direct exposure was performed using a Spray Potter Tower, while indirect exposure was conducted by evaluating residue toxicity against the thrips. Water served as a control. We assessed mortality and leaf-feeding damage 48 h post-treatment. Among the conventional insecticides, chlorfenapyr, sulfoxaflor-spinetoram, and spinosad caused high mortality across all stages in both direct and residue toxicity assays. Pyridalyl, acetamiprid, tolfenpyrad, cyclaniliprole-flonicamid, acephate, novaluron, abamectin, cyantraniliprole, imidacloprid, cyclaniliprole, spirotetramat, and carbaryl displayed moderate toxicity, affecting at least two stages in either exposure route. Additionally, chlorfenapyr, spinosad, sulfoxaflor-spinetoram, pyridalyl, acetamiprid, cyclaniliprole, cyclaniliprole-flonicamid, abamectin, and acephate inhibited larvae and adult’s leaf-feeding damage in both direct and residue toxicity assays. Regarding biorational insecticides, mineral oil (3%) and sesame oil caused the highest mortality and lowest leaf-feeding damage. Greenhouse evaluations of spinosad, chlorfenapyr, sulfoxaflor-spinetoram, and pyridalyl are recommended. Also, a rotation program incorporating these products, while considering different modes of action, is advised for ornamental growers to avoid resistance and to comply with regulations. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 8413 KiB  
Article
Evaluation of a Push–Pull Strategy for Spotted-Wing Drosophila Management in Highbush Blueberry
Insects 2024, 15(1), 47; https://doi.org/10.3390/insects15010047 - 10 Jan 2024
Viewed by 306
Abstract
We evaluated a novel push–pull control strategy for protecting highbush blueberry, Vaccinium corymbosum, against spotted-wing drosophila (SWD), Drosophila suzukii. Methyl benzoate (MB) was used as the pushing agent and a previously tested SWD attractive blend of lure-scents was used as the [...] Read more.
We evaluated a novel push–pull control strategy for protecting highbush blueberry, Vaccinium corymbosum, against spotted-wing drosophila (SWD), Drosophila suzukii. Methyl benzoate (MB) was used as the pushing agent and a previously tested SWD attractive blend of lure-scents was used as the pulling agent. MB dispensers (push) were hung in the canopy and lure-scent dispensers (pull) were hung in yellow jacket traps filled with soapy water around the blueberry bushes. Blueberries were sampled weekly, and any infestation was inspected by examining the breathing tubes of SWD eggs which protrude through the skin of infested fruit. The frequency of infestation, i.e., the proportion of berries infested with at least one egg, and the extent of infestation, i.e., the mean number of eggs in infested berries, were significantly reduced in treatments receiving MB dispensers as a pushing agent when infestation rates were very high. However, the mass trapping devices as a pulling agent did not provide comparable protection on their own and did not produce additive protection when used in combination with the MB dispensers in push–pull trials. We conclude that MB has the potential to be implemented as a spatial repellent/oviposition deterrent to reduce SWD damage in blueberry under field conditions and does not require the SWD attractant as a pulling agent to achieve crop protection. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 10021 KiB  
Article
The Microscopic Morphology of Mouthparts and Their Sensilla in the Mycophagous Ladybeetle Illeis chinensis (Coleoptera: Coccinellidae)
Insects 2024, 15(1), 46; https://doi.org/10.3390/insects15010046 - 09 Jan 2024
Viewed by 274
Abstract
The morphological diversity of insect mouthparts is closely related to changes in food sources and diets. Research into the structures of insect mouthparts may help to establish a fundamental basis for a better understanding of insect feeding mechanisms. In this study, we examined [...] Read more.
The morphological diversity of insect mouthparts is closely related to changes in food sources and diets. Research into the structures of insect mouthparts may help to establish a fundamental basis for a better understanding of insect feeding mechanisms. In this study, we examined the fine morphology of the mouthparts of Illeis chinensis using scanning electron microscopy. We paid particular attention to the types, quantities, and distribution of sensilla on the mouthparts. Our results showed that the basic components of the mouthparts of I. chinensis are the same as those in other lady beetles, i.e., the labrum, mandible, maxillae, labium, and hypopharynx. We also found structural specialization indicating adaptation to fungal feeding. On the mouthparts, there are eight kinds of sensilla and two kinds of glandular structures, including sensilla chaetica, sensilla basiconica, sensilla styloconica, sensilla coeloconica, sensilla campaniformia, sensilla placodea, sensilla digitiformia, Böhm bristles, perforated plates, and cuticular pores. This is the first time that sensilla digitiformia has been reported in ladybirds. Finally, variations in mouthparts among ladybirds with differing diets, as well as the putative functions of each of the mouthparts and sensilla, were discussed. This research can provide a reference for understanding the functions of the mouthparts in ladybird feeding behavior and thereby contribute to the development of precise insect behavior regulation and management strategies. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Back to TopTop