Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Journal = Biologics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 753 KiB  
Review
Recent Advances in Arboviral Vaccines: Emerging Platforms and Promising Innovations
Biologics 2024, 4(1), 1-16; https://doi.org/10.3390/biologics4010001 - 22 Dec 2023
Viewed by 670
Abstract
Arboviruses are a group of viruses that are transmitted by arthropods, such as mosquitoes, and cause significant morbidity and mortality worldwide. Currently, there are only a few options, with restricted use, for effective vaccines against these viruses. However, recent advances in arboviral vaccine [...] Read more.
Arboviruses are a group of viruses that are transmitted by arthropods, such as mosquitoes, and cause significant morbidity and mortality worldwide. Currently, there are only a few options, with restricted use, for effective vaccines against these viruses. However, recent advances in arboviral vaccine development have shown promising innovations that have potential in preclinical and clinical studies. Insect-specific viruses have been explored as a novel vaccine platform that can induce cross-protective immunity against related arboviruses. Nanoparticle-based vaccines have also been developed to enhance the immunogenicity and stability of viral antigens. Additionally, vaccines against mosquito salivary proteins that can modulate the host immune response and interfere with arboviral transmission are being explored. Synonymous recoding, such as random codon shuffling, codon deoptimization, and codon-pair deoptimization, is being investigated as a strategy to attenuate the replication of arboviruses in vertebrate cells, reducing the risk of reverting to wild-type virulence. Finally, mRNA vaccines have been developed to rapidly generate and express viral antigens in the host cells, eliciting robust and durable immune responses. The challenges and opportunities for arboviral vaccine development are outlined, and future directions for research and innovation are discussed. Full article
Show Figures

Figure 1

13 pages, 670 KiB  
Review
Targeting Hyaluronan Synthesis in Cancer: A Road Less Travelled
Biologics 2023, 3(4), 402-414; https://doi.org/10.3390/biologics3040022 - 12 Dec 2023
Viewed by 516
Abstract
Hyaluronan is one of the major components of the extracellular matrix and is involved in the regulation of multiple processes in both human physiology and disease. In human cancers, hyaluronan metabolism displays remarkable alterations, leading to the accumulation of large amounts of hyaluronan [...] Read more.
Hyaluronan is one of the major components of the extracellular matrix and is involved in the regulation of multiple processes in both human physiology and disease. In human cancers, hyaluronan metabolism displays remarkable alterations, leading to the accumulation of large amounts of hyaluronan matrices in the tumoural tissues. The altered levels of hyaluronan in the tumours stem from the enhanced expression and activity of hyaluronan synthases in both tumour and stromal cells. Moreover, hyaluronidase activity is also upregulated in cancer, leading to the generation of lower molecular weight hyaluronan fragments that in turn assist tumour growth, neo-angiogenesis and the metastatic cascade. Hyaluronan accumulation in malignant tissues not only assists tumour growth and metastases but is also associated with worse outcomes in cancer patients. Therefore, targeting hyaluronan synthesis emerges as an interesting strategy that might be employed for cancer treatment. This review article summarises current evidence and discusses ways to move forward in the field of targeting hyaluronan synthesis for cancer therapy. Full article
Show Figures

Figure 1

22 pages, 1253 KiB  
Review
Advances in Escherichia coli-Based Therapeutic Protein Expression: Mammalian Conversion, Continuous Manufacturing, and Cell-Free Production
Biologics 2023, 3(4), 380-401; https://doi.org/10.3390/biologics3040021 - 29 Nov 2023
Viewed by 780
Abstract
Therapeutic proteins treat many acute and chronic diseases that were until recently considered untreatable. However, their high development cost keeps them out of reach of most patients around the world. One plausible solution to lower-cost manufacturing is to adopt newer technologies like using [...] Read more.
Therapeutic proteins treat many acute and chronic diseases that were until recently considered untreatable. However, their high development cost keeps them out of reach of most patients around the world. One plausible solution to lower-cost manufacturing is to adopt newer technologies like using Escherichia coli to express larger molecules, including full-length antibodies, generally relegated to Chinese Hamster Ovary (CHO) cells, adopt continuous manufacturing, and convert the manufacturing to cell-free synthesis. The advantages of using E. coli include a shorter production cycle, little risk of viral contamination, cell host stability, and a highly reproducible post-translational modification. Full article
Show Figures

Graphical abstract

25 pages, 3655 KiB  
Review
mRNA and Synthesis-Based Therapeutic Proteins: A Non-Recombinant Affordable Option
Biologics 2023, 3(4), 355-379; https://doi.org/10.3390/biologics3040020 - 15 Nov 2023
Cited by 1 | Viewed by 925
Abstract
Recombinant technology has been around for nearly three quarters of a century and has revolutionized protein therapy. However, the cost of developing recombinant therapeutic proteins and the manufacturing infrastructure keeps their cost unaffordable for most patients. Proteins are produced in the body via [...] Read more.
Recombinant technology has been around for nearly three quarters of a century and has revolutionized protein therapy. However, the cost of developing recombinant therapeutic proteins and the manufacturing infrastructure keeps their cost unaffordable for most patients. Proteins are produced in the body via messenger RNA (mRNA) translation. This process can be readily replicated through administering a chemical nucleic acid product to manufacture the same protein recombinantly. The progress made in creating these proteins ex vivo in a cell-free system also offers a lower-cost option to produce therapeutic proteins. This article compares these alternative methods for recombinant protein production, assessing their respective advantages and limitations. While developers and regulatory agencies may encounter significant challenges in navigating product approval, including many unresolved intellectual property issues, these technologies are now proven and offer the most logical solution to making therapeutic proteins accessible to most patients. Full article
Show Figures

Figure 1

13 pages, 286 KiB  
Review
The Role of Anti-DFS70 in the Diagnosis of Systemic Autoimmune Rheumatic Diseases
Biologics 2023, 3(4), 342-354; https://doi.org/10.3390/biologics3040019 - 14 Nov 2023
Viewed by 805
Abstract
The diagnosis of systemic autoimmune rheumatic disease (SARD) or its exclusion is carried out taking into account the results of immunological studies, primarily antinuclear antibodies (ANA) and specific autoantibodies. Often, during ANA analysis via indirect immunofluorescence reaction on cellular and tissue substrates, a [...] Read more.
The diagnosis of systemic autoimmune rheumatic disease (SARD) or its exclusion is carried out taking into account the results of immunological studies, primarily antinuclear antibodies (ANA) and specific autoantibodies. Often, during ANA analysis via indirect immunofluorescence reaction on cellular and tissue substrates, a dense fine speckled 70 (DFS70) fluorescence pattern is observed. Studies on the diagnostic significance of antibodies to anti-DFS70 allow for optimizing the stepwise diagnosis of SARD. Currently, a two-step strategy for laboratory diagnostic investigation is recommended: in the first step, ANA screening is performed, and in the second step, patients with positive results undergo confirmatory tests to detect specific antibodies against individual nuclear antigens. The detection of anti-DFS70 in ANA-seropositive patients without clinical and/or other specific serological markers characteristic of a particular disease within the SARD group may be considered a negative prognostic marker. Also, in the process of decision making in clinical practice, we should remember that anti-DFS70 can be found in the blood of patients with a different, non-SARD pathology and that most people showing anti-DFS70 are healthy individuals. Full article
7 pages, 639 KiB  
Case Report
Is Metagenomics the Future Routine Diagnosis Tool for Brain Abscesses? About a Case
Biologics 2023, 3(4), 335-341; https://doi.org/10.3390/biologics3040018 - 27 Oct 2023
Viewed by 539
Abstract
Shotgun metagenomics (SMg) usefulness for brain abscess diagnosis is not known. We describe a case of brain abscess diagnosed with SMg and provide a review of the literature. A 70-year-old woman was diagnosed with multiple brain abscesses. Standard culture techniques and 16S rRNA [...] Read more.
Shotgun metagenomics (SMg) usefulness for brain abscess diagnosis is not known. We describe a case of brain abscess diagnosed with SMg and provide a review of the literature. A 70-year-old woman was diagnosed with multiple brain abscesses. Standard culture techniques and 16S rRNA gene sequencing of abscess samples remained negative. SMg finally revealed the presence of sequences from Streptococcus anginosus and Fusobacterium nucleatum, leading to antimicrobial treatment adaptation and corticosteroids initiation. The patient finally recovered. A literature review retrieved fifteen other cases of brain abscesses diagnosed with SMg. SMg results led to changes in patient management in most cases. The existing literature about the performances of SMg, its advantages, future evolutions, and limitations is then discussed. SMg place in routine should be evaluated and defined through prospective studies. Full article
Show Figures

Figure 1

14 pages, 805 KiB  
Review
Neoantigens: The Novel Precision Cancer Immunotherapy
Biologics 2023, 3(4), 321-334; https://doi.org/10.3390/biologics3040017 - 18 Oct 2023
Viewed by 1263
Abstract
The past few decades have witnessed the remarkable progress of cancer immunotherapy. Neoantigens, also known as tumor-specific antigens, are novel antigens originating from tumor-specific alterations such as genomic mutations, dysregulated RNA splicing, and post-translational modifications. Neoantigens, recognized as non-self entities, trigger immune responses [...] Read more.
The past few decades have witnessed the remarkable progress of cancer immunotherapy. Neoantigens, also known as tumor-specific antigens, are novel antigens originating from tumor-specific alterations such as genomic mutations, dysregulated RNA splicing, and post-translational modifications. Neoantigens, recognized as non-self entities, trigger immune responses that evade central and peripheral tolerance mechanisms. With the notable strides in cancer genomics facilitated by next-generation sequencing technologies, neoantigens have emerged as a promising avenue for tumor-specific immunotherapy grounded in genomic profiling-based precision medicine. Furthermore, a growing number of preclinical and clinical investigations are harnessing the potential synergies between neoantigens and other immunotherapies such as adoptive cell therapy and immune checkpoint inhibitors. In this review, we will provide a comprehensive perspective encompassing the trajectory of neoantigens, neoantigen design strategies, and the diverse array of clinical applications inherent in immunotherapy strategies centered around neoantigens. Moreover, we delve into the inherent prospects and challenges that accompany the clinical adoption of neoantigen-based immunotherapies while also putting forth potential solutions to address these challenges. Full article
Show Figures

Figure 1

13 pages, 879 KiB  
Article
Dose-Dependency of the Glycemic Response to Polyphenol-Rich Sugarcane Extract (PRSE)
Biologics 2023, 3(4), 308-320; https://doi.org/10.3390/biologics3040016 - 10 Oct 2023
Viewed by 1274
Abstract
Foods high in available carbohydrates, such as plain white sugar or sucrose, increase the postprandial blood glucose levels that may aggravate the risk of developing Type 2 Diabetes. One class of compounds that is gaining popularity due to its potential application in reducing [...] Read more.
Foods high in available carbohydrates, such as plain white sugar or sucrose, increase the postprandial blood glucose levels that may aggravate the risk of developing Type 2 Diabetes. One class of compounds that is gaining popularity due to its potential application in reducing the release of sugars for absorption into the body is polyphenols. The study aimed to investigate the effect of adding different doses of polyphenol-rich sugarcane extract (PRSE) to sucrose to lower the postprandial glycemia of the participants in a non-randomized study. The four test samples’ Glycemic Index (GI) values were calculated based on the standardized recommended methodology by comparing the area under the curve (AUC) of the test samples against the glucose standard. The glucose concentration curves were similar for the four test foods. The glucose response curves, and GI values were decreased in a dose-dependent manner. The results of this study indicate that PRSE-coated sugar can lower postprandial glycemia in normal individuals. Additionally, decreasing GI values with an increasing concentration of polyphenols suggests a dose-dependent effect between polyphenol levels and GI. Full article
Show Figures

Figure 1

12 pages, 1079 KiB  
Article
Robust Porcine GFR Measurement with Radiotracers and Only Late Blood Samples
Biologics 2023, 3(4), 296-307; https://doi.org/10.3390/biologics3040015 - 29 Sep 2023
Viewed by 614
Abstract
(1) Pigs are physiologically very relevant as animal models of human physiology. Radiotracer methods for porcine GFR (glomerular filtration rate) determination exist but require full-curve blood sampling or the application of correction formulas, which vary among studies. (2) We used porcine GFR data [...] Read more.
(1) Pigs are physiologically very relevant as animal models of human physiology. Radiotracer methods for porcine GFR (glomerular filtration rate) determination exist but require full-curve blood sampling or the application of correction formulas, which vary among studies. (2) We used porcine GFR data (40 datapoints from 20 juvenile pigs) for which the GFR was measured as the plasma clearance of [99mTc]Tc-DTPA. The reference clearance (Cl, GFR; range 41–85 mL/min) was measured from the full curve under the data. For simpler determination, an approximate clearance, Cl1, was based on the last five blood samples (acquired 120–240 min post injection). (3) The following formula for the GFR was developed: Cl = 1.27 · (Cl1)0.92. The spread (SD) was within 4% of the reference GFR. A comparison with the literature data showed that our correction formula was robust in pigs of various breeds, sizes up to approximately 200 kg, and GFRs up to approximately 400 mL/min, with a spread of up to 8%. The formula was also applicable for iohexol as the tracer. (4) A formula was developed that allows porcine GFR to be measured using only 4–5 late blood samples. This new formula can be applied across a wide range of swine breeds, animal sizes, and GFR ranges, allowing for robust determination of the GFR in pigs without full-curve blood sampling and without urine collection. Full article
Show Figures

Figure 1

43 pages, 2274 KiB  
Review
The Dawn of In Vivo Gene Editing Era: A Revolution in the Making
Biologics 2023, 3(4), 253-295; https://doi.org/10.3390/biologics3040014 - 25 Sep 2023
Cited by 1 | Viewed by 2211
Abstract
Gene or genome editing (GE) revises, removes, or replaces a mutated gene at the DNA level; it is a tool. Gene therapy (GT) offsets mutations by introducing a “normal” version of the gene into the body while the diseased gene remains in the [...] Read more.
Gene or genome editing (GE) revises, removes, or replaces a mutated gene at the DNA level; it is a tool. Gene therapy (GT) offsets mutations by introducing a “normal” version of the gene into the body while the diseased gene remains in the genome; it is a medicine. So far, no in vivo GE product has been approved, as opposed to 22 GT products approved by the FDA, and many more are under development. No GE product has been approved globally; however, critical regulatory agencies are encouraging their entry, as evidenced by the FDA issuing a guideline specific to GE products. The potential of GE in treating diseases far supersedes any other modality conceived in history. Still, it also presents unparalleled risks—from off-target impact, delivery consistency and long-term effects of gene-fixing leading to designer babies and species transformation that will keep the bar high for the approval of these products. These challenges will come to the light of resolution only after the FDA begins approving them and opening the door to a revolution in treating hundreds of untreatable diseases that will be tantamount to a revolution in the making. This article brings a perspective and a future analysis of GE to educate and motivate developers to expand GE products to fulfill the needs of patients. Full article
Show Figures

Graphical abstract

21 pages, 1127 KiB  
Review
Unraveling the Immunopathogenesis of Multiple Sclerosis: The Dynamic Dance of Plasmablasts and Pathogenic T Cells
Biologics 2023, 3(3), 232-252; https://doi.org/10.3390/biologics3030013 - 14 Sep 2023
Viewed by 895
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in [...] Read more.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in the number of patients, and it often occurs in young people, with an average age of onset of around 30 years old, but it can also occur in children and the elderly. It is more common in women than men, with a male-to-female ratio of approximately 1:3. As the immunopathogenesis of MS, a group of B cells called plasmablasts controls encephalomyelitis via IL-10 production. These IL-10-producing B cells, called regulatory B cells, suppress inflammatory responses in experimental mouse models of autoimmune diseases including MS. Since it has been clarified that these regulatory B cells are plasmablasts, it is expected that the artificial control of plasmablast differentiation will lead to the development of new treatments for MS. Among CD8-positive T cells in the peripheral blood, the proportion of PD-1-positive cells is decreased in MS patients compared with healthy controls. The dysfunction of inhibitory receptors expressed on T cells is known to be the core of MS immunopathology and may be the cause of chronic persistent inflammation. The PD-1+ CD8+ T cells may also serve as indicators that reflect the condition of each patient in other immunological neurological diseases such as MS. Th17 cells also regulate the development of various autoimmune diseases, including MS. Thus, the restoration of weakened immune regulatory functions may be a true disease-modifying treatment. So far, steroids and immunosuppressants have been the mainstream for autoimmune diseases, but the problem is that this kills not only pathogenic T cells, but also lymphocytes, which are necessary for the body. From this understanding of the immune regulation of MS, we can expect the development of therapeutic strategies that target only pathogenic immune cells. Full article
Show Figures

Figure 1

23 pages, 571 KiB  
Review
A Current Review on the Role of Prebiotics in Colorectal Cancer
Biologics 2023, 3(3), 209-231; https://doi.org/10.3390/biologics3030012 - 22 Aug 2023
Viewed by 1390
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the United States and worldwide. Recent evidence has corroborated a strong correlation between poor diet and the development of CRC, and further research is being conducted to investigate the association between [...] Read more.
Colorectal cancer (CRC) is one of the leading causes of death in the United States and worldwide. Recent evidence has corroborated a strong correlation between poor diet and the development of CRC, and further research is being conducted to investigate the association between intestinal microbiome and the development of cancer. New studies have established links with certain foods and synthetic food compounds that may be effective in reducing the risk for carcinogenesis by providing protection against cancer cell proliferation and antagonizing oncogenic pathways. Prebiotics are gaining popularity as studies have demonstrated chemo-preventive as well as anticancer potential of prebiotics. This paper aims to discuss the wide definition and scope of prebiotics by reviewing the studies that provide insights into their effects on human health in the context of colorectal cancer. Full article
Show Figures

Figure 1

11 pages, 1325 KiB  
Article
Precision Medicine in a Community Cancer Center: Pan-Cancer DNA/RNA Sequencing of Tumors Reveals Clinically Relevant Gene Fusions
Biologics 2023, 3(3), 198-208; https://doi.org/10.3390/biologics3030011 - 04 Aug 2023
Viewed by 1520
Abstract
Background: Gene fusions occur when two independent genes form a hybrid gene through genomic rearrangements, which often leads to abnormal expression and function of an encoded protein. In hematological and solid cancers, oncogenic fusions may be prognostic, diagnostic, or therapeutic biomarkers. Improved detection [...] Read more.
Background: Gene fusions occur when two independent genes form a hybrid gene through genomic rearrangements, which often leads to abnormal expression and function of an encoded protein. In hematological and solid cancers, oncogenic fusions may be prognostic, diagnostic, or therapeutic biomarkers. Improved detection and understanding of the functional implications of such fusions may be beneficial for patient care. Methods: We performed a retrospective analysis of our internal genomic database to identify known and novel gene fusions in different solid tumors seen in our community cancer center. We then investigated the clinical implications of the fusions we identified. Results: We identified 420 known oncogenic fusions and 25 unclassified gene fusions across twenty-six different cancer types. Of 420 fusion-positive tumors with known fusions, there were 366 unique gene fusions. Conclusions: About 10% of tumors investigated had oncogenic fusions, which supports the notion that comprehensive molecular profiling, including RNA sequencing, should be provided for patients with advanced cancers. Full article
Show Figures

Figure 1

11 pages, 2519 KiB  
Article
Administration of Collagen Peptide Prevents the Progression of Pulmonary Fibrosis in Bleomycin-Treated Mice
Biologics 2023, 3(3), 187-197; https://doi.org/10.3390/biologics3030010 - 28 Jul 2023
Viewed by 1349
Abstract
Collagen peptides (CPs) are food-derived peptides that possess a variety of bioactive properties. Our study investigates the effects of CP on pulmonary fibrosis in bleomycin (BLM)-treated mice. C57BL/6J mice were subcutaneously injected with BLM for two weeks followed by a three-week experimental diet [...] Read more.
Collagen peptides (CPs) are food-derived peptides that possess a variety of bioactive properties. Our study investigates the effects of CP on pulmonary fibrosis in bleomycin (BLM)-treated mice. C57BL/6J mice were subcutaneously injected with BLM for two weeks followed by a three-week experimental diet containing 25 mg/g of CP derived from chicken feet. Supplementation with CP suppressed the increase in lung weight and disruption of lung architecture observed in mice treated with BLM. BLM-treated mice also exhibited higher hydroxyproline content and increased expression levels of type I and III collagen subunit genes in the lungs. CP supplementation exerted no effect on these collagen-related factors; however, it significantly suppressed the gene expression of fibronectin and inflammation-related molecules in the lungs of BLM-treated mice. These findings suggest that CP administration prevents the development of pulmonary fibrosis by acting as an anti-inflammatory agent. Full article
Show Figures

Figure 1

29 pages, 14220 KiB  
Review
Exploring the Impact of Herbal Therapies on COVID-19 and Influenza: Investigating Novel Delivery Mechanisms for Emerging Interventions
Biologics 2023, 3(3), 158-186; https://doi.org/10.3390/biologics3030009 - 11 Jul 2023
Viewed by 1704
Abstract
Synthetic antivirals and corticosteroids have been used to treat both influenza and the SARS-CoV-2 disease named COVID-19. However, these medications are not always effective, produce several adverse effects, and are associated with high costs. Medicinal plants and their constituents act on several different [...] Read more.
Synthetic antivirals and corticosteroids have been used to treat both influenza and the SARS-CoV-2 disease named COVID-19. However, these medications are not always effective, produce several adverse effects, and are associated with high costs. Medicinal plants and their constituents act on several different targets and signaling pathways involved in the pathophysiology of influenza and COVID-19. This study aimed to perform a review to evaluate the effects of medicinal plants on influenza and COVID-19, and to investigate the potential delivery systems for new antiviral therapies. EMBASE, PubMed, GOOGLE SCHOLAR, and COCHRANE databases were searched. The studies included in this review showed that medicinal plants, in different formulations, can help to decrease viral spread and the time until full recovery. Plants reduced the incidence of acute respiratory syndromes and the symptom scores of the illnesses. Moreover, plants are related to few adverse effects and have low costs. In addition to their significance as natural antiviral agents, medicinal plants and their bioactive compounds may exhibit low bioavailability. This highlights the need for alternative delivery systems, such as metal nanoparticles, which can effectively transport these compounds to infected tissues. Full article
Show Figures

Figure 1

Back to TopTop