Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,846)

Search Parameters:
Journal = Genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1417 KiB  
Review
Effects of Peanut Rust Disease (Puccinia arachidis Speg.) on Agricultural Production: Current Control Strategies and Progress in Breeding for Resistance
Genes 2024, 15(1), 102; https://doi.org/10.3390/genes15010102 - 15 Jan 2024
Viewed by 55
Abstract
Peanuts play a pivotal role as an economic crop on a global scale, serving as a primary source of both edible oil and protein. Peanut rust (Puccinia arachidis Speg.) disease constitutes a significant global biotic stress, representing a substantial economic threat to [...] Read more.
Peanuts play a pivotal role as an economic crop on a global scale, serving as a primary source of both edible oil and protein. Peanut rust (Puccinia arachidis Speg.) disease constitutes a significant global biotic stress, representing a substantial economic threat to the peanut industry by inducing noteworthy reductions in seed yields and compromising oil quality. This comprehensive review delves into the distinctive characteristics and detrimental symptoms associated with peanut rust, scrutinizing its epidemiology and the control strategies that are currently implemented. Notably, host resistance emerges as the most favored strategy due to its potential to surmount the limitations inherent in other approaches. The review further considers the recent advancements in peanut rust resistance breeding, integrating the use of molecular marker technology and the identification of rust resistance genes. Our findings indicate that the ongoing refinement of control strategies, especially through the development and application of immune or highly resistant peanut varieties, will have a profound impact on the global peanut industry. Full article
(This article belongs to the Special Issue 5Gs in Crop Genetic and Genomic Improvement)
Show Figures

Figure 1

28 pages, 8774 KiB  
Article
Differential Interferon Signaling Regulation and Oxidative Stress Responses in the Cerebral Cortex and Cerebellum Could Account for the Spatiotemporal Pattern of Neurodegeneration in Niemann–Pick Disease Type C
Genes 2024, 15(1), 101; https://doi.org/10.3390/genes15010101 - 15 Jan 2024
Viewed by 94
Abstract
Niemann–Pick disease type C (NPC) is a fatal neurodegenerative condition caused by genetic mutations of the NPC1 or NPC2 genes that encode the NPC1 and NPC2 proteins, respectively, which are believed to be responsible for cholesterol efflux from late-endosomes/lysosomes. The pathogenic mechanisms that [...] Read more.
Niemann–Pick disease type C (NPC) is a fatal neurodegenerative condition caused by genetic mutations of the NPC1 or NPC2 genes that encode the NPC1 and NPC2 proteins, respectively, which are believed to be responsible for cholesterol efflux from late-endosomes/lysosomes. The pathogenic mechanisms that lead to neurodegeneration in NPC are not well understood. There are, however, well-defined spatiotemporal patterns of neurodegeneration that may provide insight into the pathogenic process. For example, the cerebellum is severely affected from early disease stages, compared with cerebral regions, which remain relatively spared until later stages. Using a genome-wide transcriptome analysis, we have recently identified an aberrant pattern of interferon activation in the cerebella of pre-symptomatic Npc1−/− mice. Here, we carried out a comparative transcriptomic analysis of cerebral cortices and cerebella of pre-symptomatic Npc1−/− mice and age-matched controls to identify differences that may help explain the pathological progression within the NPC brain. We report lower cerebral expression of genes within interferon signaling pathways, and significant differences in the regulation of oxidative stress, compared with the cerebellum. Our findings suggest that a delayed onset of interferon signaling, possibly linked to lower oxidative stress, may account for the slower onset of cerebral cortical pathology in the disease. Full article
(This article belongs to the Special Issue Genetics and Genomics of Inherited Metabolic Diseases)
Show Figures

Figure 1

18 pages, 3455 KiB  
Article
Deciphering the Immune Microenvironment at the Forefront of Tumor Aggressiveness by Constructing a Regulatory Network with Single-Cell and Spatial Transcriptomic Data
Genes 2024, 15(1), 100; https://doi.org/10.3390/genes15010100 - 15 Jan 2024
Viewed by 108
Abstract
The heterogeneity and intricate cellular architecture of complex cellular ecosystems play a crucial role in the progression and therapeutic response of cancer. Understanding the regulatory relationships of malignant cells at the invasive front of the tumor microenvironment (TME) is important to explore the [...] Read more.
The heterogeneity and intricate cellular architecture of complex cellular ecosystems play a crucial role in the progression and therapeutic response of cancer. Understanding the regulatory relationships of malignant cells at the invasive front of the tumor microenvironment (TME) is important to explore the heterogeneity of the TME and its role in disease progression. In this study, we inferred malignant cells at the invasion front by analyzing single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data of ER-positive (ER+) breast cancer patients. In addition, we developed a software pipeline for constructing intercellular gene regulatory networks (IGRNs), which help to reduce errors generated by single-cell communication analysis and increase the confidence of selected cell communication signals. Based on the constructed IGRN between malignant cells at the invasive front of the TME and the immune cells of ER+ breast cancer patients, we found that a high expression of the transcription factors FOXA1 and EZH2 played a key role in driving tumor progression. Meanwhile, elevated levels of their downstream target genes (ESR1 and CDKN1A) were associated with poor prognosis of breast cancer patients. This study demonstrates a bioinformatics workflow of combining scRNA-seq and ST data; in addition, the study provides the software pipelines for constructing IGRNs automatically (cIGRN). This strategy will help decipher cancer progression by revealing bidirectional signaling between invasive frontline malignant tumor cells and immune cells, and the selected signaling molecules in the regulatory network may serve as biomarkers for mechanism studies or therapeutic targets. Full article
(This article belongs to the Special Issue Bioinformatics of Disease Research)
Show Figures

Figure 1

17 pages, 1241 KiB  
Article
SLCO1B1 Genetic Variation Influence on Atorvastatin Systemic Exposure in Pediatric Hypercholesterolemia
Genes 2024, 15(1), 99; https://doi.org/10.3390/genes15010099 - 15 Jan 2024
Viewed by 70
Abstract
This clinical study examined the influence of SLCO1B1 c.521T>C (rs4149056) on plasma atorvastatin concentrations in pediatric hypercholesterolemia. The participants (8–21 years), including heterozygous (c.521T/C, n = 13), homozygous (c.521C/C, n = 2) and controls (c.521T/T, n = 13), completed a single-oral-dose pharmacokinetic study. [...] Read more.
This clinical study examined the influence of SLCO1B1 c.521T>C (rs4149056) on plasma atorvastatin concentrations in pediatric hypercholesterolemia. The participants (8–21 years), including heterozygous (c.521T/C, n = 13), homozygous (c.521C/C, n = 2) and controls (c.521T/T, n = 13), completed a single-oral-dose pharmacokinetic study. Similar to in adults, the atorvastatin (AVA) area-under-concentration-time curve from 0 to 24 h (AUC0–24) was 1.7-fold and 2.8-fold higher in participants with c.521T/C and c.521C/C compared to the c.521T/T participants, respectively. The inter-individual variability in AVA exposure within these genotype groups ranged from 2.3 to 4.8-fold, indicating that additional factors contribute to the inter-individual variability in the AVA dose–exposure relationship. A multivariate model reinforced the SLCO1B1 c.521T>C variant as the central factor contributing to AVA systemic exposure in this pediatric cohort, accounting for ~65% of the variability in AVA AUC0–24. Furthermore, lower AVA lactone concentrations in participants with increased body mass index contributed to higher exposure within the c.521T/T and c.521T/C genotype groups. Collectively, these factors contributing to higher systemic exposure could increase the risk of toxicity and should be accounted for when individualizing the dosing of atorvastatin in eligible pediatric patients. Full article
(This article belongs to the Special Issue Genetics, Genomics and Precision Medicine in Heart Diseases)
Show Figures

Figure 1

18 pages, 4255 KiB  
Article
Comprehensive Analysis of the Complete Mitochondrial Genome of Rehmannia chingii: An Autotrophic Species in the Orobanchaceae Family
Genes 2024, 15(1), 98; https://doi.org/10.3390/genes15010098 - 15 Jan 2024
Viewed by 134
Abstract
Rehmannia chingii is an important medicinal plant with immense value in scientific research. However, its mitochondrial genome (mitogenome) has not yet been characterized. Herein, based on whole-genome Illumina short reads and PacBio HiFi reads, we obtained the complete mitogenome of R. chingii through [...] Read more.
Rehmannia chingii is an important medicinal plant with immense value in scientific research. However, its mitochondrial genome (mitogenome) has not yet been characterized. Herein, based on whole-genome Illumina short reads and PacBio HiFi reads, we obtained the complete mitogenome of R. chingii through a de novo assembly strategy. We carried out comparative genomic analyses and found that, in comparison with the plastid genome (plastome) showing a high degree of structural conservation, the R. chingii mitogenome structure is relatively complex, showing an intricate ring structure with 16 connections, owing to five repetitive sequences. The R. chingii mitogenome was 783,161 bp with a GC content of 44.8% and contained 77 genes, comprising 47 protein-coding genes (CDS), 27 tRNA genes, and 3 rRNA genes. We counted 579 RNA editing events in 47 CDS and 12,828 codons in all CDSs of the R. chingii mitogenome. Furthermore, 24 unique sequence transfer fragments were found between the mitogenome and plastome, comprising 8 mitogenome CDS genes and 16 plastome CDS genes, corresponding to 2.39% of the R. chingii mitogenome. Mitogenomes had shorter but more collinear regions, evidenced by a comparison of the organelles of non-parasitic R. chingii, hemiparasitic Pedicularis chinensis, and holoparasitic Aeginetia indica in the Orobanchaceae family. Moreover, from non-parasitic to holoparasitic species, the genome size in the mitogenomes of Orobanchaceae species did not decrease gradually. Instead, the smallest mitogenome was found in the hemiparasitic species P. chinensis, with a size of 225,612 bp. The findings fill the gap in the mitogenome research of the medicinal plant R. chingii, promote the progress of the organelle genome research of the Orobanchaceae family, and provide clues for molecular breeding. Full article
(This article belongs to the Special Issue Advances in Genetics and Genomics of Plants)
Show Figures

Figure 1

13 pages, 3572 KiB  
Article
AcMYB10 Involved in Anthocyanin Regulation of ‘Hongyang’ Kiwifruit Induced via Fruit Bagging and High-Postharvest-Temperature Treatments
Genes 2024, 15(1), 97; https://doi.org/10.3390/genes15010097 - 14 Jan 2024
Viewed by 291
Abstract
Light and temperature are key factors influencing the accumulation of anthocyanin in fruit crops. To assess the effects of fruit bagging during development and high post-ripening temperature on ‘Hongyang’ kiwifruit, we compared the pigmentation phenotypes and expression levels of anthocyanin-related genes between bagged [...] Read more.
Light and temperature are key factors influencing the accumulation of anthocyanin in fruit crops. To assess the effects of fruit bagging during development and high post-ripening temperature on ‘Hongyang’ kiwifruit, we compared the pigmentation phenotypes and expression levels of anthocyanin-related genes between bagged and unbagged treatments, and between 25 °C and 37 °C postharvest storage temperatures. Both the bagging and 25 °C treatments showed better pigmentation phenotypes with higher anthocyanin concentrations. The results of the qRT-PCR analysis revealed that the gene expression levels of LDOX (leucoanthocyanidin dioxygenase), F3GT (UDP-flavonoid 3-O-glycosyltransferase ), AcMYB10, and AcbHLH42 were strongly correlated and upregulated by both the bagging treatment and 25 °C storage. The results of bimolecular fluorescence complementation and luciferase complementation imaging assays indicated an interaction between AcMYB10 and AcbHLH42 in plant cells, whereas the results of a yeast one-hybrid assay further demonstrated that AcMYB10 activated the promoters of AcLODX and AcF3GT. These results strongly suggest that enhanced anthocyanin synthesis is caused by the promoted expression of AcLODX and AcF3GT, regulated by the complex formed by AcMYB10AcbHLH42. Full article
(This article belongs to the Special Issue Biotechnology and Genetics in Fruits)
Show Figures

Figure 1

20 pages, 3687 KiB  
Review
Polyploid Cancer Cell Models in Drosophila
Genes 2024, 15(1), 96; https://doi.org/10.3390/genes15010096 - 14 Jan 2024
Viewed by 212
Abstract
Cells with an abnormal number of chromosomes have been found in more than 90% of solid tumors, and among these, polyploidy accounts for about 40%. Polyploidized cells most often have duplicate centrosomes as well as genomes, and thus their mitosis tends to promote [...] Read more.
Cells with an abnormal number of chromosomes have been found in more than 90% of solid tumors, and among these, polyploidy accounts for about 40%. Polyploidized cells most often have duplicate centrosomes as well as genomes, and thus their mitosis tends to promote merotelic spindle attachments and chromosomal instability, which produces a variety of aneuploid daughter cells. Polyploid cells have been found highly resistant to various stress and anticancer therapies, such as radiation and mitogenic inhibitors. In other words, common cancer therapies kill proliferative diploid cells, which make up the majority of cancer tissues, while polyploid cells, which lurk in smaller numbers, may survive. The surviving polyploid cells, prompted by acute environmental changes, begin to mitose with chromosomal instability, leading to an explosion of genetic heterogeneity and a concomitant cell competition and adaptive evolution. The result is a recurrence of the cancer during which the tenacious cells that survived treatment express malignant traits. Although the presence of polyploid cells in cancer tissues has been observed for more than 150 years, the function and exact role of these cells in cancer progression has remained elusive. For this reason, there is currently no effective therapeutic treatment directed against polyploid cells. This is due in part to the lack of suitable experimental models, but recently several models have become available to study polyploid cells in vivo. We propose that the experimental models in Drosophila, for which genetic techniques are highly developed, could be very useful in deciphering mechanisms of polyploidy and its role in cancer progression. Full article
(This article belongs to the Special Issue Application of Animal Modeling in Cancer)
Show Figures

Figure 1

11 pages, 2079 KiB  
Article
Spatiotemporal Expression Characterization of KRTAP6 Family Genes and Its Effect on Wool Traits
Genes 2024, 15(1), 95; https://doi.org/10.3390/genes15010095 - 14 Jan 2024
Viewed by 227
Abstract
Keratin-related proteins (KAPs) are structural components of wool fibers and are thought to play a key role in regulating the physical and mechanical properties of fibers. Among all KAP genes (KRTAPs), KRTAP6 gene family (KRTAP6-1, KRTAP6-2, KRTAP6-3, [...] Read more.
Keratin-related proteins (KAPs) are structural components of wool fibers and are thought to play a key role in regulating the physical and mechanical properties of fibers. Among all KAP genes (KRTAPs), KRTAP6 gene family (KRTAP6-1, KRTAP6-2, KRTAP6-3, KRTAP6-4, and KRTAP6-5) is a very important member with high polymorphism and notable association with some wool traits. In this study, we used real-time fluorescence quantitative PCR (RT-qPCR) and in situ hybridization to investigate spatiotemporal expression of KRTAP6s. The results revealed that KRTAP6 family genes were significantly expressed during anagen compared to other stages (p < 0.05). And it was found the five genes were expressed predominantly in the dermal papillae, inner and outer root sheaths, and showed a distinct spatiotemporal expression pattern. Also, it was found that KRTAP6-1 and KRTAP6-5 mRNA expression was negatively correlated with wool mean fiber diameter (MFD) and mean staple strength (MSS) (p < 0.05). In summary, the KRTAP6 family genes share a similar spatiotemporal expression pattern. And KRTAP6-1 and KRTAP6-5 may regulate the MFD and MSS of Gansu Alpine fine-wool sheep wool by changing the expression. Full article
(This article belongs to the Special Issue Genetics and Breeding in Sheep and Goats)
Show Figures

Figure 1

23 pages, 1193 KiB  
Review
GIGANTEA Unveiled: Exploring Its Diverse Roles and Mechanisms
Genes 2024, 15(1), 94; https://doi.org/10.3390/genes15010094 - 13 Jan 2024
Viewed by 168
Abstract
GIGANTEA (GI) is a conserved nuclear protein crucial for orchestrating the clock-associated feedback loop in the circadian system by integrating light input, modulating gating mechanisms, and regulating circadian clock resetting. It serves as a core component which transmits blue light signals for circadian [...] Read more.
GIGANTEA (GI) is a conserved nuclear protein crucial for orchestrating the clock-associated feedback loop in the circadian system by integrating light input, modulating gating mechanisms, and regulating circadian clock resetting. It serves as a core component which transmits blue light signals for circadian rhythm resetting and overseeing floral initiation. Beyond circadian functions, GI influences various aspects of plant development (chlorophyll accumulation, hypocotyl elongation, stomatal opening, and anthocyanin metabolism). GI has also been implicated to play a pivotal role in response to stresses such as freezing, thermomorphogenic stresses, salinity, drought, and osmotic stresses. Positioned at the hub of complex genetic networks, GI interacts with hormonal signaling pathways like abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), and brassinosteroids (BRs) at multiple regulatory levels. This intricate interplay enables GI to balance stress responses, promoting growth and flowering, and optimize plant productivity. This review delves into the multifaceted roles of GI, supported by genetic and molecular evidence, and recent insights into the dynamic interplay between flowering and stress responses, which enhance plants’ adaptability to environmental challenges. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Stress Responses)
12 pages, 2104 KiB  
Article
PFHxS Exposure and the Risk of Non-Alcoholic Fatty Liver Disease
Genes 2024, 15(1), 93; https://doi.org/10.3390/genes15010093 - 13 Jan 2024
Viewed by 208
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a highly prevalent environmental pollutant, often considered to be less toxic than other poly- and perfluoroalkyl substances (PFASs). Despite its relatively lower environmental impact compared to other PFASs, several studies have suggested that exposure to PFHxS may be associated [...] Read more.
Perfluorohexanesulfonic acid (PFHxS) is a highly prevalent environmental pollutant, often considered to be less toxic than other poly- and perfluoroalkyl substances (PFASs). Despite its relatively lower environmental impact compared to other PFASs, several studies have suggested that exposure to PFHxS may be associated with disruptions of liver function in humans. Nevertheless, the precise pathomechanisms underlying PFHxS-induced non-alcoholic fatty liver disease (NAFLD) remain relatively unclear. Therefore, this study applied our previously published transcriptome dataset to explore the effects of PFHxS exposure on the susceptibility to NAFLD and to identify potential mechanisms responsible for PFHxS-induced NAFLD through transcriptomic analysis conducted on zebrafish embryos. Results showed that exposure to PFHxS markedly aggravated hepatic symptoms resembling NAFLD and other metabolic syndromes (MetS) in fish. Transcriptomic analysis unveiled 17 genes consistently observed in both NAFLD and insulin resistance (IR), along with an additional 28 genes identified in both the adipocytokine signaling pathway and IR. These shared genes were also found within the NAFLD dataset, suggesting that hepatic IR may play a prominent role in the development of PFHxS-induced NAFLD. In conclusion, our study suggests that environmental exposure to PFHxS could be a potential risk factor for the development of NAFLD, challenging the earlier notion of PFHxS being safer as previously claimed. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2829 KiB  
Article
Alternative Traits for Genetic Evaluation of Mastitis Based on Lifetime Merit
Genes 2024, 15(1), 92; https://doi.org/10.3390/genes15010092 - 12 Jan 2024
Viewed by 191
Abstract
Genetic selection has achieved little progress in reducing mastitis incidence. Mastitis traits are problematic due to the lack of sensitivity of the data and reliance on clinical diagnosis, often missing subclinical cases, and/or on monthly somatic cell count (SCC) measurements. The current measure [...] Read more.
Genetic selection has achieved little progress in reducing mastitis incidence. Mastitis traits are problematic due to the lack of sensitivity of the data and reliance on clinical diagnosis, often missing subclinical cases, and/or on monthly somatic cell count (SCC) measurements. The current measure for mastitis is the lactation average of the somatic cells score (LSCS). We studied two datasets: (1) 148 heifers divided into non-intramammary infected, sub-clinically infected and clinical mastitis groups; (2) data from 89,601 heifers from Israeli Holsteins through the same period divided into “udder healthy” (UH) and “non-healthy” (UNH) by a threshold of SCC 120,000 cells/mL in all nine monthly milk recordings. In study 1, non-infected heifers had significantly (p < 0.05) more partum, production days and overall lifetime milk production compared to clinical and sub-clinically infected. In study 2, UH heifers (20.3%) had significantly higher (p < 0.01) lifetime milk, production days, and lactations. Subdividing datasets by sires, the same analyses detected differences in percentages of UH daughters between the sire groups. Lifetime milk production correlated (r = +0.83, p < 0.001) with udder health status. SCC threshold of less than 120,000 cells/mL during all first lactation measurements indicated healthy udder, providing a valuable insight that this dichotomous trait is advantageous for calculating lifetime net-merit index (NM$) over LSCS. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

23 pages, 325 KiB  
Review
The Pathophysiology of Inherited Renal Cystic Diseases
Genes 2024, 15(1), 91; https://doi.org/10.3390/genes15010091 - 11 Jan 2024
Viewed by 290
Abstract
Renal cystic diseases (RCDs) can arise from utero to early adulthood and present with a variety of symptoms including renal, hepatic, and cardiovascular manifestations. It is well known that common RCDs such as autosomal polycystic kidney disease and autosomal recessive kidney disease are [...] Read more.
Renal cystic diseases (RCDs) can arise from utero to early adulthood and present with a variety of symptoms including renal, hepatic, and cardiovascular manifestations. It is well known that common RCDs such as autosomal polycystic kidney disease and autosomal recessive kidney disease are linked to genes such as PKD1 and PKHD1, respectively. However, it is important to investigate the genetic pathophysiology of how these gene mutations lead to clinical symptoms and include some of the less-studied RCDs, such as autosomal dominant tubulointerstitial kidney disease, multicystic dysplastic kidney, Zellweger syndrome, calyceal diverticula, and more. We plan to take a thorough look into the genetic involvement and clinical sequalae of a number of RCDs with the goal of helping to guide diagnosis, counseling, and treatment. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
15 pages, 7835 KiB  
Article
Complete Mitochondrial Genome and Phylogenetic Analysis of Tarsiger indicus (Aves: Passeriformes: Muscicapidae)
Genes 2024, 15(1), 90; https://doi.org/10.3390/genes15010090 - 11 Jan 2024
Viewed by 206
Abstract
Tarsiger indicus (Vieillot, 1817), the White-browed Bush Robin, is a small passerine bird widely distributed in Asian countries. Here, we successfully sequenced its mitogenome using the Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) for PE 2 × 150 bp sequencing. Combined [...] Read more.
Tarsiger indicus (Vieillot, 1817), the White-browed Bush Robin, is a small passerine bird widely distributed in Asian countries. Here, we successfully sequenced its mitogenome using the Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) for PE 2 × 150 bp sequencing. Combined with other published mitogenomes, we conducted the first comprehensive comparative mitogenome analysis of Muscicapidae birds and reconstructed the phylogenetic relationships between Muscicapidae and related groups. The T. indicus mitogenome was 16,723 bp in size, and it possessed the typical avian mitogenome structure and organization. Most PCGs of T. indicus were initiated strictly with the typical start codon ATG, while COX1 and ND2 were started with GTG. RSCU statistics showed that CUA, CGA, and GCC were relatively high frequency in the T. indicus mitogenome. T. cyanurus and T. indicus shared very similar mitogenomic features. All 13 PCGs of Muscicapidae mitogenomes had experienced purifying selection. Specifically, ATP8 had the highest rate of evolution (0.13296), whereas COX1 had the lowest (0.01373). The monophylies of Muscicapidae, Turdidae, and Paradoxornithidae were strongly supported. The clade of ((Muscicapidae + Turdidae) + Sturnidae) in Passeriformes was supported by both Bayesian Inference and Maximum likelihood analyses. The latest taxonomic status of many passerine birds with complex taxonomic histories were also supported. For example, Monticola gularis, T. indicus, and T. cyanurus were allocated to Turdidae in other literature; our phylogenetic topologies clearly supported their membership in Muscicapidae; Paradoxornis heudei, Suthora webbiana, S. nipalensis, and S. fulvifrons were formerly classified into Muscicapidae; we supported their membership in Paradoxornithidae; Culicicapa ceylonensis was originally classified as a member of Muscicapidae; our results are consistent with a position in Stenostiridae. Our study enriches the genetic data of T. indicus and provides new insights into the molecular phylogeny and evolution of passerine birds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 6601 KiB  
Article
Dynamic Evolution of Repetitive Elements and Chromatin States in Apis mellifera Subspecies
Genes 2024, 15(1), 89; https://doi.org/10.3390/genes15010089 - 11 Jan 2024
Viewed by 274
Abstract
In this study, we elucidate the contribution of repetitive DNA sequences to the establishment of social structures in honeybees (Apis mellifera). Despite recent advancements in understanding the molecular mechanisms underlying the formation of honeybee castes, primarily associated with Notch signaling, the [...] Read more.
In this study, we elucidate the contribution of repetitive DNA sequences to the establishment of social structures in honeybees (Apis mellifera). Despite recent advancements in understanding the molecular mechanisms underlying the formation of honeybee castes, primarily associated with Notch signaling, the comprehensive identification of specific genomic cis-regulatory sequences remains elusive. Our objective is to characterize the repetitive landscape within the genomes of two honeybee subspecies, namely A. m. mellifera and A. m. ligustica. An observed recent burst of repeats in A. m. mellifera highlights a notable distinction between the two subspecies. After that, we transitioned to identifying differentially expressed DNA elements that may function as cis-regulatory elements. Nevertheless, the expression of these sequences showed minimal disparity in the transcriptome during caste differentiation, a pivotal process in honeybee eusocial organization. Despite this, chromatin segmentation, facilitated by ATAC-seq, ChIP-seq, and RNA-seq data, revealed a distinct chromatin state associated with repeats. Lastly, an analysis of sequence divergence among elements indicates successive changes in repeat states, correlating with their respective time of origin. Collectively, these findings propose a potential role of repeats in acquiring novel regulatory functions. Full article
(This article belongs to the Special Issue Evolution of Non-coding Elements in Genome Biology)
Show Figures

Figure 1

18 pages, 9602 KiB  
Article
Deciphering the Plastomic Code of Chinese Hog-Peanut (Amphicarpaea edgeworthii Benth., Leguminosae): Comparative Genomics and Evolutionary Insights within the Phaseoleae Tribe
Genes 2024, 15(1), 88; https://doi.org/10.3390/genes15010088 - 11 Jan 2024
Viewed by 394
Abstract
The classification and phylogenetic relationships within the Phaseoleae tribe (Leguminosae) have consistently posed challenges to botanists. This study addresses these taxonomic intricacies, with a specific focus on the Glycininae subtribe, by conducting a comprehensive analysis of the highly conserved plastome in Amphicarpaea edgeworthii [...] Read more.
The classification and phylogenetic relationships within the Phaseoleae tribe (Leguminosae) have consistently posed challenges to botanists. This study addresses these taxonomic intricacies, with a specific focus on the Glycininae subtribe, by conducting a comprehensive analysis of the highly conserved plastome in Amphicarpaea edgeworthii Benth., a critical species within this subtribe. Through meticulous genomic sequencing, we identified a plastome size of 148,650 bp, composed of 128 genes, including 84 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Comparative genomic analysis across seven Glycininae species illuminated a universally conserved circular and quadripartite structure, with nine genes exhibiting notable nucleotide diversity, signifying a remarkable genomic variability. Phylogenetic reconstruction of 35 Phaseoleae species underscores the affinity of Amphicarpaea with Glycine, placing Apios as a sister lineage to all other Phaseoleae species, excluding Clitorinae and Diocleinae subtribes. Intriguingly, Apios, Butea, Erythrina, and Spatholobus, traditionally clumped together in the Erythrininae subtribe, display paraphyletic divergence, thereby contesting their taxonomic coherence. The pronounced structural differences in the quadripartite boundary genes among taxa with unresolved subtribal affiliations demand a reevaluation of Erythrininae’s taxonomic classification, potentially refining the phylogenetic contours of the tribe. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop