Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (477)

Search Parameters:
Journal = Chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 573 KiB  
Article
Unveiling the Molecular Signature of High-Temperature Cooking: Gas Chromatography-Mass Spectrometry Profiling of Sucrose and Histidine Reactions and Its Derivatives Induce Necrotic Death on THP1 Immune Cells
Chemistry 2024, 6(1), 153-164; https://doi.org/10.3390/chemistry6010008 - 15 Jan 2024
Abstract
High-temperature cooking processes like frying, baking, smoking, or drying can induce chemical transformations in conventional food ingredients, causing deteriorative modifications. These reactions, including hydrolytic, oxidative, and thermal changes, are common and can alter the food’s chemical composition. This study transformed a combination of [...] Read more.
High-temperature cooking processes like frying, baking, smoking, or drying can induce chemical transformations in conventional food ingredients, causing deteriorative modifications. These reactions, including hydrolytic, oxidative, and thermal changes, are common and can alter the food’s chemical composition. This study transformed a combination of sucrose and histidine (Su-Hi) through charring or pyrolysis. The GC-MS profiling study showed that when sucrose and histidine (Su-Hi) were exposed to high temperatures (≈240 °C), they produced carbonyl and aromatic compounds including beta-D-Glucopyranose, 1,6-anhydro (10.11%), 2-Butanone, 4,4-dimethoxy- (12.89%), 2(1H)-Quinolinone-hydrazine (5.73%), Benzenamine (6.35%), 2,5-Pyrrolidinedione, 1-[(3,4-dimethylbenzoyl)oxy]- (5.82%), Benzene-(1-ethyl-1-propenyl) (5.62%), and 4-Pyridinamine-2,6-dimethyl (5.52%). The compounds mentioned can permeate the cell membrane and contribute to the development of cell death by necrosis in human immune cells. The evidence suggests that a specific set of pyrolytic compounds may pose a risk to immune cells. This investigation reveals the complex relationship between high-temperature cooking-induced transformations, compound permeation inside the cells, and downstream cellular responses, emphasizing the significance of considering the broader health implications of food chemical contaminants. Full article
(This article belongs to the Section Food Science)
Show Figures

Graphical abstract

55 pages, 11356 KiB  
Review
Recent Developments in Enantioselective Scandium-Catalyzed Transformations
Chemistry 2024, 6(1), 98-152; https://doi.org/10.3390/chemistry6010007 - 11 Jan 2024
Viewed by 208
Abstract
This review collects the recent developments in the field of enantioselective scandium-catalyzed transformations published since the beginning of 2016, illustrating the power of chiral scandium catalysts to promote all types of reactions. Full article
(This article belongs to the Section Catalysis)
Show Figures

Scheme 1

3 pages, 154 KiB  
Editorial
Special Issue “Functional Biomolecule-Based Composites and Nanostructures: Current Developments and Applications—A Themed Issue in Honor of Prof. Dr. Itamar Willner”
by
Chemistry 2024, 6(1), 95-97; https://doi.org/10.3390/chemistry6010006 - 11 Jan 2024
Viewed by 189
Abstract
This Special Issue of Chemistry is a themed issue of “Functional Biomolecule-Based Composites and Nanostructures: Current Developments and Applications” in honor of Itamar Willner to celebrate his innovative research career [...] Full article
14 pages, 1686 KiB  
Article
A Sensor (Optode) Based on Cellulose Triacetate Membrane for Fe(III) Detection in Water Samples
Chemistry 2024, 6(1), 81-94; https://doi.org/10.3390/chemistry6010005 - 27 Dec 2023
Viewed by 354
Abstract
Iron is a heavy metal that often contaminates water. High iron concentrations are toxic to human health, so monitoring its presence in water is necessary. Iron in water can be detected using an optical sensor (optode). This research aims to fabricate an optode [...] Read more.
Iron is a heavy metal that often contaminates water. High iron concentrations are toxic to human health, so monitoring its presence in water is necessary. Iron in water can be detected using an optical sensor (optode). This research aims to fabricate an optode based on a cellulose triacetate membrane with a selective reagent against Fe(III). The optode was fabricated by mixing cellulose triacetate polymer, a plasticiser (a mixture of oleic acid and acetophenone), aliquot-336, and thiocyanate as a selective reagent. Membrane performance was tested based on working range, linearity, limit of detection and quantitation, precision, and accuracy. The performance of the membrane showed a linear response in the concentration range of 0.1–4 mg/L with a coefficient of determination (R2) of 0.9937, limit of detection of 0.0250 mg/L, limit of quantitation of 0.0757 mg/L, repeatability precision with a relative standard deviation of 3.31%, and an accuracy of 100.49%. Optode selectivity was good for interfering ions Cr(VI) and Pb(II). The colour complex of the optode was stable until the 10th day. The application of iron detection in water samples shows an average concentration of 0.2541 mg/L with good precision and accuracy. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Graphical abstract

19 pages, 6385 KiB  
Article
4,4-Bis(isopropylthio)-1,1-diphenyl-2-azabuta-1,3-diene Adducts with Cadmium(II), Mercury(II) and Copper(I) Iodides: Crystal, Molecular and Electronic Structures of d10 Transition Metal Chelate Complexes
Chemistry 2024, 6(1), 62-80; https://doi.org/10.3390/chemistry6010004 - 25 Dec 2023
Viewed by 275
Abstract
The thioether-functionalized 2-azabutadiene (iPrS)2C=C(H)-N=CPh2 L ligates to CdI2 and HgI2 to form the chelate compounds [CdI2{(iPrS)2C=C(H)-N=CPh2] (1) and [HgI2(iPrS)2C=C(H)-N=CPh [...] Read more.
The thioether-functionalized 2-azabutadiene (iPrS)2C=C(H)-N=CPh2 L ligates to CdI2 and HgI2 to form the chelate compounds [CdI2{(iPrS)2C=C(H)-N=CPh2] (1) and [HgI2(iPrS)2C=C(H)-N=CPh2] (2). Their crystal structures were solved via X-ray diffraction. Both crystallize in the non-centrosymmetric space groups: monoclinic P21 (1) and orthorhombic P212121 (2), respectively. The closed-shell d10 metal centers are four-coordinated (two iodides and S and N coordinating atoms from the ligand L) in both complexes. The geometrical indexes τ indicate that a highly distorted trigonal pyramidal is adopted for 1 and a seesaw geometry for 2. The comparative nature of metal–ligand bonds is discussed on the basis of metric parameters and of QT-AIM (quantum theory of atoms in molecules) calculations. L was also treated with CuI to obtain the dinuclear species [LCu(μ2-I2)CuL] (3), in which the two Cu(I) centers are linked by a short metal–metal bond. The geometric and electronic properties of 3 are compared with those of 1 and 2. Full article
(This article belongs to the Section Crystallography)
Show Figures

Figure 1

11 pages, 2061 KiB  
Article
New Polymorph of β-Cyclodextrin with a Higher Bioavailability
Chemistry 2024, 6(1), 51-61; https://doi.org/10.3390/chemistry6010003 - 23 Dec 2023
Viewed by 321
Abstract
A new polymorph of anhydrous β-cyclodextrin (polymorph III) was obtained and characterized for the first time using powder X-ray diffraction, infrared spectroscopy, and thermal analysis. The solution enthalpy and time of dissolution in water were determined using solution calorimetry for this polymorph and [...] Read more.
A new polymorph of anhydrous β-cyclodextrin (polymorph III) was obtained and characterized for the first time using powder X-ray diffraction, infrared spectroscopy, and thermal analysis. The solution enthalpy and time of dissolution in water were determined using solution calorimetry for this polymorph and compared with those of the dried commercial form of β-cyclodextrin (polymorph I), its amorphous form, and 2-hydroxypropyl-β-cyclodextrin. The specific heat capacities of polymorphs I and III were determined using differential scanning calorimetry across a wide range of temperatures, providing enthalpy and Gibbs energy values for the polymorphic transition at 298 K. The affinities of polymorph III and 2-hydroxypropyl-β-cyclodextrin for water were characterized by determining their hydration isotherms, which provided values of hydration Gibbs energy. Being energy-rich, the new-found polymorph of β-cyclodextrin has a significantly higher dissolution rate and an increased affinity for water compared with the dried commercial form of β-cyclodextrin. These properties render the new polymorph promising in industrial applications for guest inclusion in aqueous solutions and pastes, and may be a desirable alternative for water-soluble β-cyclodextrin derivatives. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Graphical abstract

38 pages, 6005 KiB  
Review
Pure Hydrolysis of Polyamides: A Comparative Study
Chemistry 2024, 6(1), 13-50; https://doi.org/10.3390/chemistry6010002 - 20 Dec 2023
Viewed by 788
Abstract
Polyamides (PAs) undergo local environmental degradation, leading to a decline in their mechanical properties over time. PAs can experience various forms of degradation, such as thermal degradation, oxidation, hydrothermal oxidation, UV oxidation, and hydrolysis. In order to better comprehend the degradation process of [...] Read more.
Polyamides (PAs) undergo local environmental degradation, leading to a decline in their mechanical properties over time. PAs can experience various forms of degradation, such as thermal degradation, oxidation, hydrothermal oxidation, UV oxidation, and hydrolysis. In order to better comprehend the degradation process of PAs, it is crucial to understand each of these degradation mechanisms individually. While this review focuses on hydrolysis, the data from degrading similar PAs under pure thermal oxidation and/or hydrothermal oxidation are also collected to grasp more perspective. This review analyzes the available characterization data and evaluates the changes in molecular weight, crystallinity, chemical structure, and mechanical properties of PAs that have aged in oxygen-free water at high temperatures. The molecular weight and mechanical strength decrease as the crystallinity ratio rises over aging time. This development is occurring at a slower rate than degradation in pure thermal oxidation. By combining the data for the changes in mechanical properties with the ones for molecular weight and crystallinity, the point of embrittlement can be not only predicted, but also modeled. This prediction is also shown to be dependent on the fibers, additives, types of PA, pH, and more. Full article
(This article belongs to the Topic Molecular Topology and Computation)
Show Figures

Figure 1

12 pages, 1072 KiB  
Article
Synthesis, Antibacterial Activity, and Cytotoxicity of Azido-Propargyloxy 1,3,5-Triazine Derivatives and Hyperbranched Polymers
Chemistry 2024, 6(1), 1-12; https://doi.org/10.3390/chemistry6010001 - 19 Dec 2023
Viewed by 320
Abstract
A new method for the synthesis of azido-propargyloxy derivatives of 1,3,5-triazine has been developed utilizing the nitrosation of hydrazyno-1,3,5-triazines. New hydrazines (2-hydrazino-4,6-bis(propargyloxy)-1,3,5-triazine and 2,4-dihydrazino-6-propargyloxy-1,3,5-triazine) were synthesized and characterized via FTIR, NMR spectroscopy and elemental analysis. The hyperbranched polymers with azide (diazide monomer) and [...] Read more.
A new method for the synthesis of azido-propargyloxy derivatives of 1,3,5-triazine has been developed utilizing the nitrosation of hydrazyno-1,3,5-triazines. New hydrazines (2-hydrazino-4,6-bis(propargyloxy)-1,3,5-triazine and 2,4-dihydrazino-6-propargyloxy-1,3,5-triazine) were synthesized and characterized via FTIR, NMR spectroscopy and elemental analysis. The hyperbranched polymers with azide (diazide monomer) and propargyloxy terminal groups were obtained via the azide-alkyne polycycloaddition reaction of diazide and monoazide AB2-type monomers. The antibacterial activity against Escherichia coli bacteria of 2,4,6-trispropargyloxy-1,3,5-triazine, 2-azido-4,6-bispropargyloxy-1,3,5-triazine, and 2,4-diazido-6-propargyloxy-1,3,5-triazine and their hyperbranched polymers was studied. Only 2,4-diazido-6-propargyloxy-1,3,5-triazine has weak antibacterial activity in comparison with ampicillin. The cytotoxicity of these compounds against M-HeLa, FetMSC, and Vero cell lines was also studied. 2,4,6-trispropargyloxy-1,3,5-triazine does not show any cytotoxic effect (IC50 ≥ 280 µM). It was shown that the presence of an azide group in the compound directly affects the cytotoxic effect. Hyperbranched polymers have a less cytotoxic effect against M-HeLa (IC50 > 100) in comparison with monomers (IC50 = 90–99 µM). This makes it possible to use these polymers as the basis for biocompatible materials in biomedical applications. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 5456 KiB  
Article
Total Synthesis of the Proposed Structure of Indolyl 1,2-Propanediol Alkaloid, 1-(1H-Indol-3-yloxy)propan-2-ol
Chemistry 2023, 5(4), 2772-2784; https://doi.org/10.3390/chemistry5040177 - 12 Dec 2023
Viewed by 574
Abstract
The first total synthesis of the proposed structure of unprecedented indolyl derivative bearing 1,2-propanediol moiety is described. Isomerization of 3-alkoxyindolines through indolenium intermediates was the key step in the total synthesis. 1H, 13C-NMR, IR, and HRMS spectra of the synthetic compound [...] Read more.
The first total synthesis of the proposed structure of unprecedented indolyl derivative bearing 1,2-propanediol moiety is described. Isomerization of 3-alkoxyindolines through indolenium intermediates was the key step in the total synthesis. 1H, 13C-NMR, IR, and HRMS spectra of the synthetic compound drastically differed to those of the originally reported structure, which suggests the natural product requires revision. Full article
(This article belongs to the Section Biological and Natural Products)
Show Figures

Graphical abstract

16 pages, 3576 KiB  
Article
Structural Characterization, Antioxidant, and Antiviral Activity of Sulfated Polysaccharide (Fucoidan) from Sargassum asperifolium (Turner) J. Agardh
Chemistry 2023, 5(4), 2756-2771; https://doi.org/10.3390/chemistry5040176 - 12 Dec 2023
Viewed by 558
Abstract
Brown algae possess a diverse array of acidic polysaccharides, including fucoidan. The present research intends to investigate the extraction and characterization of algal polysaccharides to explore their antiviral activity. A light brown sulfated polysaccharide was extracted (with a yield of 18% of dry [...] Read more.
Brown algae possess a diverse array of acidic polysaccharides, including fucoidan. The present research intends to investigate the extraction and characterization of algal polysaccharides to explore their antiviral activity. A light brown sulfated polysaccharide was extracted (with a yield of 18% of dry weight) from Sargassum asperifolium algal powder. The results of fractionation of sulfated polysaccharide revealed the occurrence of two primary fractions: low-sulfated polysaccharides (SPF1) and high-sulfated polysaccharides (SPF2). The bioassays conducted on SPF2 demonstrated a greater level of antioxidant activity compared to SPF1, with respective IC50 values of 17 ± 1.3 µg/mL and 31 ± 1.1 μg/mL after a duration of 120 min. The cytotoxicity of SPF2 on Vero cells was determined, and the calculated half-maximal cytotoxic concentration (CC50) was found to be 178 ± 1.05 µg/mL. Based on these results, an antiviral activity assay was conducted on SPF2. The results demonstrated that SPF2 had greater efficacy against Hepatitis A Virus (HAV) compared to Herpes Simplex Virus Type 1 (HSV-1), with corresponding half-maximal inhibitory concentrations (IC50) of 48 ± 1.8 µg/mL and 123 ± 2.6 µg/mL, respectively. The active SPF2 was characterized by FT-IR, 1H, and 13C NMR spectroscopy. The extracted fucoidan can be used as a natural therapeutic agent in combating various viral infections. Full article
Show Figures

Graphical abstract

43 pages, 7300 KiB  
Review
Recent Advances in C–H Functionalization of Pyrenes
Chemistry 2023, 5(4), 2713-2755; https://doi.org/10.3390/chemistry5040175 - 11 Dec 2023
Viewed by 601
Abstract
In recent years, transition metal-catalyzed C–H activation and site-selective functionalization have been considered to be valuable synthetic tactics to functionalize organic compounds containing multiple C–H bonds. Pyrene is one of the privileged and notorious polycyclic aromatic hydrocarbons. Pyrene and its derivatives have found [...] Read more.
In recent years, transition metal-catalyzed C–H activation and site-selective functionalization have been considered to be valuable synthetic tactics to functionalize organic compounds containing multiple C–H bonds. Pyrene is one of the privileged and notorious polycyclic aromatic hydrocarbons. Pyrene and its derivatives have found applications in various branches of chemical sciences, including organic chemistry, chemical biology, supramolecular sciences, and material sciences. Given the importance of pyrene derivatives, several classical methods, including the C–H functionalization method, have been developed for synthesizing modified pyrene scaffolds. This review attempts to cover the recent developments in the area pertaining to the modification of the pyrene motif through the C–H activation process and the functionalization of C–H bonds present in the pyrene motif, leading to functionalized pyrenes. Full article
Show Figures

Graphical abstract

13 pages, 3752 KiB  
Review
Chiral Hydroxamic Acid Ligands in the Asymmetric Synthesis of Natural Products
Chemistry 2023, 5(4), 2700-2712; https://doi.org/10.3390/chemistry5040174 - 01 Dec 2023
Viewed by 489
Abstract
Chiral hydroxamic acid (HA) and bis-hydroxamic acid (BHA) ligands have made significant contributions to the field of asymmetric synthesis, particularly in the synthesis of natural products. These ligands possess unique molecular structures that allow for exceptional stereochemical control, leading to their widespread use [...] Read more.
Chiral hydroxamic acid (HA) and bis-hydroxamic acid (BHA) ligands have made significant contributions to the field of asymmetric synthesis, particularly in the synthesis of natural products. These ligands possess unique molecular structures that allow for exceptional stereochemical control, leading to their widespread use in catalytic systems. This review highlights the advancements made in asymmetric synthesis using chiral hydroxamic acid and bis-hydroxamic acid ligands and their impact on the synthesis of complex natural products. This discussion encompasses their role in enantioselective C–C bond formation, the functionalization of C–H bonds, the asymmetric transformations involving heteroatoms, and their application in the total synthesis of natural products. The versatility and efficiency of chiral hydroxamic acid ligands and bis-hydroxamic acid ligands make them invaluable tools for synthetic chemists working towards the efficient and selective synthesis of natural products. This review provides a comprehensive overview of their contributions, showcasing their potential to expand the boundaries of chemical synthesis and access the diverse array of natural product scaffolds. Full article
(This article belongs to the Topic Catalysis: Homogeneous and Heterogeneous)
Show Figures

Graphical abstract

18 pages, 4777 KiB  
Article
Iron-Promoted 1,5-Substitution Reaction of Endocyclic Enyne Oxiranes with MeMgBr: A Stereoselective Method for the Synthesis of Exocyclic 2,4,5-Trienol Derivatives
Chemistry 2023, 5(4), 2682-2699; https://doi.org/10.3390/chemistry5040173 - 01 Dec 2023
Viewed by 419
Abstract
The iron-promoted 1,5-substitution reaction of endocyclic oxiranes with MeMgBr yields exocyclic 2,4,5-trienols with high diastereomeric ratios of up to 100:0. However, for the method’s success, the oxirane ring must have a trans-configuration. The reactions exhibit strong stereoselectivity concerning the methylation mode and [...] Read more.
The iron-promoted 1,5-substitution reaction of endocyclic oxiranes with MeMgBr yields exocyclic 2,4,5-trienols with high diastereomeric ratios of up to 100:0. However, for the method’s success, the oxirane ring must have a trans-configuration. The reactions exhibit strong stereoselectivity concerning the methylation mode and the configuration of the resulting exocyclic double bond. Enantiomerically pure enyne oxiranes can be synthesized through Sharpless asymmetric dihydroxylation and subsequent manipulations. With these reagents, it has been possible to produce exocyclic 2,4,5-trienols in enantiopure forms. Importantly, this process maintains chirality without degradation during the center-to-axis transfer of chirality. Full article
Show Figures

Graphical abstract

5 pages, 238 KiB  
Editorial
Chemistry: A Place to Publish Your Creative Multidisciplinary Research
Chemistry 2023, 5(4), 2677-2681; https://doi.org/10.3390/chemistry5040172 - 27 Nov 2023
Viewed by 883
Abstract
It is my pleasure to welcome you to Chemistry (ISSN: 2624-8549), an open access peer-reviewed journal that publishes both primary reports and reviews highlighting important advances in fundamental areas of chemistry and/or illustrating the central role of chemistry in bridging the physical [...] Read more.
It is my pleasure to welcome you to Chemistry (ISSN: 2624-8549), an open access peer-reviewed journal that publishes both primary reports and reviews highlighting important advances in fundamental areas of chemistry and/or illustrating the central role of chemistry in bridging the physical and life sciences [...] Full article
20 pages, 3358 KiB  
Article
Bioactive Pyrrolo[2,1-f][1,2,4]triazines: Synthesis, Molecular Docking, In Vitro Cytotoxicity Assay and Antiviral Studies
Chemistry 2023, 5(4), 2657-2676; https://doi.org/10.3390/chemistry5040171 - 21 Nov 2023
Viewed by 586
Abstract
A series of 2,4-disubstituted pyrrolo[2,1-f][1,2,4]triazines containing both aryl and thienyl substituents were synthesized by exploiting the 1,3-cycloaddition reaction of N(1)-ethyl-1,2,4-triazinium tetrafluoroborates with dimethyl acetylenedicarboxylate. The antiviral activity of the synthesized compounds against influenza virus strain A/Puerto Rico/8/34 (H1N1) was studied in [...] Read more.
A series of 2,4-disubstituted pyrrolo[2,1-f][1,2,4]triazines containing both aryl and thienyl substituents were synthesized by exploiting the 1,3-cycloaddition reaction of N(1)-ethyl-1,2,4-triazinium tetrafluoroborates with dimethyl acetylenedicarboxylate. The antiviral activity of the synthesized compounds against influenza virus strain A/Puerto Rico/8/34 (H1N1) was studied in experiments on Madin-Darby canine kidney (MDCK) cell culture. Among the pyrrolo[2,1-f][1,2,4]triazine derivatives, compounds with low toxicity and high antiviral activity were identified. Dimethyl 4-(4-methoxyphenyl)-7-methyl-2-p-tolylpyrrolo[2,1-f][1,2,4]triazine-5,6-dicarboxylate was found to demonstrate the best antiviral activity (IC50 4 µg/mL and selectivity index 188). Based on the results of in vitro tests and molecular docking studies performed, a plausible mechanism of action for these compounds was suggested to involve inhibition of neuraminidase. Full article
Show Figures

Graphical abstract

Back to TopTop