Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Journal = JNE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4146 KiB  
Article
Effects of Neutron Flux Distribution and Control Rod Shadowing on Control Rod Calibrations in the Oregon State TRIGA® Reactor
J. Nucl. Eng. 2024, 5(1), 13-25; https://doi.org/10.3390/jne5010002 - 03 Jan 2024
Viewed by 250
Abstract
Control rod calibration experiment results for the Oregon State TRIGA® Reactor (OSTR) immediately following LEU conversion in 2008, and MCNP® 5 predicted rod worths from the 2008 LEU Conversion Safety Analysis Report (CSAR) are discussed. The reactivity worth of the four [...] Read more.
Control rod calibration experiment results for the Oregon State TRIGA® Reactor (OSTR) immediately following LEU conversion in 2008, and MCNP® 5 predicted rod worths from the 2008 LEU Conversion Safety Analysis Report (CSAR) are discussed. The reactivity worth of the four OSTR control rods is measured using the rod-pull method. Reactor power and period measurements in this method rely on the fission chamber power detector on the north side of the reflector. It is proposed that the location of the fission chamber and the neutron flux distribution in the core may result in an inaccurate reactor period measurement due to the asymmetry of the neutron flux distribution in the OSTR core. The asymmetry of the flux is believed to be more pronounced during super-criticality, resulting in errors in the time-of-power-rise measurements. As a result, control rod calibration experiments may under-predict or over-predict the reactivity worth of certain control rods. A time-independent Monte–Carlo method for the quantification of these effects is presented. Thermal flux maps at the core axial mid-plane are obtained from the model to inform discrepancies between predicted and observed results. Full article
Show Figures

Figure 1

12 pages, 4480 KiB  
Article
Research on the Influence of Negative KERMA Factors on the Power Distribution of a Lead-Cooled Fast Reactor
J. Nucl. Eng. 2024, 5(1), 1-12; https://doi.org/10.3390/jne5010001 - 21 Dec 2023
Viewed by 293
Abstract
The accurate calculation of reactor core heating is vital for the design and safety analysis of reactor physics. However, negative KERMA factors may be produced when processing and evaluating libraries of the nuclear data files ENDF/B-VII.1 and ENDF/B-VIII.0 with the NJOY2016 code, and [...] Read more.
The accurate calculation of reactor core heating is vital for the design and safety analysis of reactor physics. However, negative KERMA factors may be produced when processing and evaluating libraries of the nuclear data files ENDF/B-VII.1 and ENDF/B-VIII.0 with the NJOY2016 code, and the continuous-energy neutron cross-section library ENDF71x with MCNP also has the same problem. Negative KERMA factors may lead to an unreasonable reactor heating rate. Therefore, it is important to investigate the influence of negative KERMA factors on the calculation of the heating rate. It was also found that negative KERMA factors can be avoided with the CENDL-3.2 library for some nuclides. Many negative KERMA nuclides are found for structural materials; there are many non-fuel regions in fast reactors, and these negative KERMA factors may have a more important impact on the power distribution in non-fuel regions. In this study, the impact of negative KERMA factors on power calculation was analyzed by using the RBEC-M benchmark and replacing the neutron cross-section library containing negative KERMA factors with one containing normal KERMA factors that were generated based on CENDL-3.2. For the RBEC-M benchmark, the deviation in the maximum neutron heating rate between the negative KERMA library and the normal library was 6.46%, and this appeared in the reflector region. In the core region, negative KERMA factors had little influence on the heating rate, and the deviations in the heating rate in most assemblies were within 1% because the heating was mainly caused by fission. However, in the reflector zone, where gamma heating was dominant, the total heating rate varied on account of the gamma heating rate. Therefore, negative KERMA factors for neutrons have little influence on the calculation of fast reactor heating according to the RBEC-M benchmark. Full article
(This article belongs to the Special Issue Monte Carlo Simulation in Reactor Physics)
Show Figures

Figure 1

9 pages, 1569 KiB  
Article
Application of Machine Learning for Classification of Nuclear Reactor Operational Status Using Magnetic Field Sensors
J. Nucl. Eng. 2023, 4(4), 723-731; https://doi.org/10.3390/jne4040045 - 06 Dec 2023
Viewed by 378
Abstract
The nuclear fuel cycle forms the basis for producing special nuclear materials used in nuclear weapons via a series of interdependent industrial operations. These industrial operations each produce characteristic emanations that can be gathered to ascertain signatures of facility operations. Machine learning and [...] Read more.
The nuclear fuel cycle forms the basis for producing special nuclear materials used in nuclear weapons via a series of interdependent industrial operations. These industrial operations each produce characteristic emanations that can be gathered to ascertain signatures of facility operations. Machine learning and deep learning techniques were applied to time series magnetic field sensor data collected at the High Flux Isotope Reactor (HFIR) to assess the feasibility of determining the ON/OFF operational state of the reactor. When data collected by the sensor near the cooling fans, position 9, are transformed to the frequency domain, it was found that both machine and deep learning methods were able to classify the operational state of the reactor with a balanced accuracy of over 90%. This result suggests that the utilized methods show promise for application as techniques to verify declared activities involving nuclear reactors. Additional effort is recommended to develop models and architectures that will more fully capitalize on the data’s temporal nature by incorporating the magnetic field’s time dependence to improve the model’s robustness and classification performance. Full article
(This article belongs to the Special Issue Nuclear Security and Nonproliferation Research and Development)
Show Figures

Figure 1

12 pages, 7552 KiB  
Communication
Oxidation of Alloy X-750 with Low Iron Content in Simulated BWR Environment
J. Nucl. Eng. 2023, 4(4), 711-722; https://doi.org/10.3390/jne4040044 - 29 Nov 2023
Viewed by 295
Abstract
This paper presents an investigation of the oxidation of Alloy X-750 containing 5 wt% iron in a simulated boiling water reactor (BWR) environment. The specimens were exposed by a water jet (10 m/s) at 286 °C for durations ranging from 2 to 840 [...] Read more.
This paper presents an investigation of the oxidation of Alloy X-750 containing 5 wt% iron in a simulated boiling water reactor (BWR) environment. The specimens were exposed by a water jet (10 m/s) at 286 °C for durations ranging from 2 to 840 h, and the development of the oxide microstructure was mainly studied using electron microscopy. The results showed that the oxide scale consists of blocky crystals of trevorite on top of a porous inner layer rich in Ni and Cr. After the longest exposure time, the trevorite crystals completely covered the specimen surface. The study further revealed that the rate at which the oxide grew and the metal dissolved both decreased with time, and the metal thinning process appeared to be sub-parabolic. Given the significant variation in iron content in the X-750 specification, the influence of this element on the material’s corrosion performance in BWR was examined by comparing the results from this investigation with those from previous work on material containing 8 wt% Fe. The study demonstrates that the oxide growth, metal dissolution and metal thinning were slower in the material with a higher iron content, indicating the importance of this element in limiting the degradation of Alloy X-750 in BWR environments. Full article
Show Figures

Figure 1

20 pages, 9355 KiB  
Article
Estimation of Continuous Distribution of Iterated Fission Probability Using an Artificial Neural Network with Monte Carlo-Based Training Data
J. Nucl. Eng. 2023, 4(4), 691-710; https://doi.org/10.3390/jne4040043 - 06 Nov 2023
Viewed by 790
Abstract
The Monte Carlo neutron transport method is used to accurately estimate various quantities, such as k-eigenvalue and integral neutron flux. However, in the case of estimating a distribution of a desired quantity, the Monte Carlo method does not typically provide continuous distribution. Recently, [...] Read more.
The Monte Carlo neutron transport method is used to accurately estimate various quantities, such as k-eigenvalue and integral neutron flux. However, in the case of estimating a distribution of a desired quantity, the Monte Carlo method does not typically provide continuous distribution. Recently, the functional expansion tally (FET) and kernel density estimation (KDE) methods have been developed to provide a continuous distribution of a Monte Carlo tally. In this paper, we propose a method to estimate a continuous distribution of a quantity in all phase-space variables using a fully connected feedforward artificial neural network (ANN) model with Monte Carlo-based training data. As a proof of concept, a continuous distribution of iterated fission probability (IFP) was estimated by ANN models in two distinct fissile systems. The ANN models were trained on the training data created using the Monte Carlo IFP method. The estimated IFP distributions by the ANN models were compared with the Monte Carlo-based data that include the training data. Additionally, the IFP distributions by the ANN models were also compared with the adjoint angular neutron flux distributions obtained with the deterministic neutron transport code PARTISN. The comparisons showed varying degrees of agreement or discrepancy; however, it was observed that the ANN models learned the general trend of the IFP distributions from the Monte Carlo-based training data. Full article
(This article belongs to the Special Issue Monte Carlo Simulation in Reactor Physics)
Show Figures

Figure 1

23 pages, 2296 KiB  
Review
Flow Characterisation Using Fibre Bragg Gratings and Their Potential Use in Nuclear Thermal Hydraulics Experiments
J. Nucl. Eng. 2023, 4(4), 668-690; https://doi.org/10.3390/jne4040042 - 25 Oct 2023
Viewed by 792
Abstract
With the ever-increasing role that nuclear power is playing to meet the aim of net zero carbon emissions, there is an intensified demand for understanding the thermal hydraulic phenomena at the heart of current and future reactor concepts. In response to this demand, [...] Read more.
With the ever-increasing role that nuclear power is playing to meet the aim of net zero carbon emissions, there is an intensified demand for understanding the thermal hydraulic phenomena at the heart of current and future reactor concepts. In response to this demand, the development of high-resolution flow analysis instrumentation is of increased importance. One such under-utilised and under-researched instrumentation technology, in the context of fluid flow analysis, is fibre Bragg grating (FBG)-based sensors. This technology allows for the construction of simple, minimally invasive instruments that are resistant to high temperatures, high pressures and corrosion, while being adaptable to measure a wide range of fluid properties, including temperature, pressure, refractive index, chemical concentration, flow rate and void fraction—even in opaque media. Furthermore, concertinaing FBG arrays have been developed capable of reconstructing 3D images of large phase structures, such as bubbles in slug flow, that interact with the array. Currently a significantly under-explored application, FBG-based instrumentation thus shows great potential for utilisation in experimental thermal hydraulics; expanding the available flow characterisation and imaging technologies. Therefore, this paper will present an overview of current FBG-based flow characterisation technologies, alongside a systematic review of how these techniques have been utilised in nuclear thermal hydraulics experiments. Finally, a discussion will be presented regarding how these techniques can be further developed and used in nuclear research. Full article
Show Figures

Figure 1

14 pages, 2555 KiB  
Article
A Consistent One-Dimensional Multigroup Diffusion Model for Molten Salt Reactor Neutronics Calculations
J. Nucl. Eng. 2023, 4(4), 654-667; https://doi.org/10.3390/jne4040041 - 06 Oct 2023
Viewed by 917
Abstract
Molten Salt Reactors (MSRs) have recently gained resurged research and development interest in the advanced reactor community. Several computational tools are being developed to capture the strong neutronics/thermal-hydraulics coupling effect in this special reactor configuration. This paper presents a consistent one-dimensional (1D) multigroup [...] Read more.
Molten Salt Reactors (MSRs) have recently gained resurged research and development interest in the advanced reactor community. Several computational tools are being developed to capture the strong neutronics/thermal-hydraulics coupling effect in this special reactor configuration. This paper presents a consistent one-dimensional (1D) multigroup neutron diffusion model for MSR analysis, with the primary aim for fast and accurate calculations for long transients, as well as sensitivity and uncertainty analysis of the reactor. A fictitious radial leakage cross section is introduced in the model to properly account for the radial leakage effects of the reactor. The leakage cross section and other consistent neutronics parameters are generated with the Monte Carlo code Serpent using high-fidelity three-dimensional (3D) models. The accuracy of the 1D consistent model is verified by the reference solution from the Monte Carlo model on the Molten Salt Reactor Experiment (MSRE) configuration. The 1D consistent model successfully reproduced the integrated flux from the 3D model and the reactor multiplication factor keff with the error in the range of 95 to 397 pcm (per cent mille), depending on discretized energy group structures. The developed model is also extended to estimate the reactivity loss due to fuel circulation in MSRE. The estimate of reactivity loss in dynamics analysis is in great agreement with the experimental data. This model functions as the first step in the development of a 1D fully neutronics/thermal-hydraulics coupled model for short- and long-term MSRE transient analysis. Full article
Show Figures

Figure 1

20 pages, 327 KiB  
Article
The Peculiarities of the German Uranium Project (1939–1945)
J. Nucl. Eng. 2023, 4(3), 634-653; https://doi.org/10.3390/jne4030040 - 13 Sep 2023
Viewed by 1205
Abstract
An analysis of the peculiarities of the German Uranium Project (1939–1945) reveals that it was, in many ways, different from what one would expect. There was no work at all on a possible bomb, nor on plutonium. The reactor experiments were limited to [...] Read more.
An analysis of the peculiarities of the German Uranium Project (1939–1945) reveals that it was, in many ways, different from what one would expect. There was no work at all on a possible bomb, nor on plutonium. The reactor experiments were limited to subcritical systems and did not attempt to achieve the proclaimed goal of a self-sustaining chain reaction. The so-far identified deficits (lack of interest in Nazi circles, mismanagement, scientific mistakes, and deteriorating work conditions during the war) are relevant but not sufficient for explaining the peculiarities. We deduce that the scientists involved, and even the Heereswaffenamt (army ordnance), shied away from making progress, not only towards a bomb but even towards a reactor. They did not fail; they rather renounced a possible success in order not to provoke political interest in the development of a bomb. Full article
9 pages, 1956 KiB  
Article
Feasibility Study on Production of High-Purity Rhenium-185 by Nuclear Transmutation of Natural Tantalum
J. Nucl. Eng. 2023, 4(3), 625-633; https://doi.org/10.3390/jne4030039 - 01 Sep 2023
Viewed by 886
Abstract
Rhenium-186 (Re-186) has attracted attention as a medical isotope. The feasibility of producing Re-185, the raw material for Re-186, using a fast reactor was evaluated using a continuous energy Monte Carlo code. The irradiation of natural tantalum (Ta) in the fast reactor can [...] Read more.
Rhenium-186 (Re-186) has attracted attention as a medical isotope. The feasibility of producing Re-185, the raw material for Re-186, using a fast reactor was evaluated using a continuous energy Monte Carlo code. The irradiation of natural tantalum (Ta) in the fast reactor can produce Re-185 with an isotopic purity of 99%. A two-step irradiation process with different moderators was found to improve the production rate of Re-185. Specifically, this can be achieved by using zirconium hydride (ZrH1.7) as a moderator in the first transmutation process from natural Ta to tungsten (W), and then zirconium deuteride (ZrD1.7) as a moderator in the second transmutation process from W to Re-185. Due to the two-step irradiation, the production rate of Re-185 from Ta can be increased up to a maximum of 470 times compared with irradiation without a moderator, and 2.3 g of Re-185 can be obtained from 1571 g of Ta in 1 year of irradiation. The proposed isotope production method is a new method that is different from the conventional electromagnetic enrichment process. Full article
Show Figures

Figure 1

23 pages, 12573 KiB  
Review
A Review of Candidates for a Validation Data Set for High-Assay Low-Enrichment Uranium Fuels
J. Nucl. Eng. 2023, 4(3), 602-624; https://doi.org/10.3390/jne4030038 - 16 Aug 2023
Viewed by 962
Abstract
Many advanced reactor concept designs rely on high-assay low-enriched uranium (HALEU) fuel, enriched up to approximately 19.75% 235U by weight. Efforts are underway by the US government to increase HALEU production in the United States to meet anticipated needs. However, very few [...] Read more.
Many advanced reactor concept designs rely on high-assay low-enriched uranium (HALEU) fuel, enriched up to approximately 19.75% 235U by weight. Efforts are underway by the US government to increase HALEU production in the United States to meet anticipated needs. However, very few data exist for validation of computational models that include HALEU, beyond a few fresh fuel benchmark specifications in the International Reactor Physics Experiment Evaluation Project. Nevertheless, there are other data with potential value available for developing into quality benchmarks for use in data- and software-validation efforts. This paper reviews the available evaluated HALEU fuel benchmarks and some of the potentially relevant benchmarks for fresh highly enriched uranium. It then introduces experimental data for HALEU fuel irradiated at Idaho National Laboratory, from relatively recent irradiation programs at the Advanced Test Reactor. Such data should be evaluated and, if valuable, collected into detailed benchmark specifications to meet the needs of HALEU-based reactor designers. Full article
Show Figures

Figure 1

37 pages, 17102 KiB  
Article
Advancements in Designing the DEMO Driver Blanket System at the EU DEMO Pre-Conceptual Design Phase: Overview, Challenges and Opportunities
J. Nucl. Eng. 2023, 4(3), 565-601; https://doi.org/10.3390/jne4030037 - 03 Aug 2023
Viewed by 1047
Abstract
The EU conducted the pre-conceptual design (PCD) phase of the demonstration reactor (DEMO) during 2014–2020 under the framework of the EUROfusion consortium. The current strategy of DEMO design is to bridge the breeding blanket (BB) technology gaps between ITER and a commercial fusion [...] Read more.
The EU conducted the pre-conceptual design (PCD) phase of the demonstration reactor (DEMO) during 2014–2020 under the framework of the EUROfusion consortium. The current strategy of DEMO design is to bridge the breeding blanket (BB) technology gaps between ITER and a commercial fusion power plant (FPP) by playing the role of a “Component Test Facility” for the BB. Within this strategy, a so-called driver blanket, with nearly full in-vessel surface coverage, will aim at achieving high-level stakeholder requirements of tritium self-sufficiency and power extraction for net electricity production with rather conventional technology and/or operational parameters, while an advanced blanket (or several of them) will aim at demonstrating, with limited coverage, features that are deemed necessary for a commercial FPP. Currently, two driver blanket candidates are being investigated for the EU DEMO, namely the water-cooled lithium lead and the helium-cooled pebble bed breeding blanket concepts. The PCD phase has been characterized not only by the detailed design of the BB systems themselves, but also by their holistic integration in DEMO, prioritizing near-term solutions, in accordance with the idea of a driver blanket. This paper summarizes the status for both BB driver blanket candidates at the end of the PCD phase, including their corresponding tritium extraction and removal (TER) systems, underlining the main achievements and lessons learned, exposing outstanding key system design and R&D challenges and presenting identified opportunities to address those risks during the conceptual design (CD) phase that started in 2021. Full article
Show Figures

Figure 1

13 pages, 37204 KiB  
Article
Tritium Desorption Behavior and Microstructure Evolution of Beryllium Irradiated at Low Temperature Up to High Neutron Dose in BR2 Reactor
J. Nucl. Eng. 2023, 4(3), 552-564; https://doi.org/10.3390/jne4030036 - 02 Aug 2023
Viewed by 637
Abstract
The present study investigated the release of tritium from beryllium irradiated at 323 K to a neutron fluence of 4.67 × 1026 m−2 (E > 1 MeV), corresponding up to 22,000 appm helium and 2000 appm tritium productions. The TPD tests [...] Read more.
The present study investigated the release of tritium from beryllium irradiated at 323 K to a neutron fluence of 4.67 × 1026 m−2 (E > 1 MeV), corresponding up to 22,000 appm helium and 2000 appm tritium productions. The TPD tests revealed a single tritium release peak during thermal desorption tests, irrespective of the heating mode employed. The tritium release peaks occurred at temperatures ranging from 1031–1136 K, depending on the heating mode, with a desorption energy of 1.6 eV. Additionally, the effective tritium diffusion coefficient was found to vary from 1.2 × 10−12 m2/s at 873 K to 1.8 × 10−10 m2/s at 1073 K. The evolution of beryllium microstructure was found to be dependent on the annealing temperature. No discernible differences were observed between the as-received state and after annealing at 473–773 K for 5 h, with a corresponding porosity range of 1–2%. The annealing at temperatures of 873–1373 K for 5 h resulted in the formation of large bubbles, with porosity increasing sharply above 873 K and reaching 30–60%. Full article
Show Figures

Figure 1

17 pages, 4157 KiB  
Article
The Plutonium Temperature Effect Program
J. Nucl. Eng. 2023, 4(3), 535-551; https://doi.org/10.3390/jne4030035 - 02 Aug 2023
Viewed by 640
Abstract
Various theoretical studies have shown that highly diluted plutonium solutions could have a positive temperature effect, but up to now, no experimental program has confirmed this effect. The French Plutonium Temperature Effect Experimental Program (or PU+ in short) aims to effectively show that [...] Read more.
Various theoretical studies have shown that highly diluted plutonium solutions could have a positive temperature effect, but up to now, no experimental program has confirmed this effect. The French Plutonium Temperature Effect Experimental Program (or PU+ in short) aims to effectively show that such a positive temperature effect exists for diluted plutonium solutions. The PU+ experiments were conducted in the “Apparatus B” facility at the CEA VALDUC research center in France. It involved several sub-critical approach-type experiments using plutonium nitrate solutions with concentrations of 14.3, 15, and 20 g/L at temperatures ranging from 20 to 40 °C. Fourteen (five at 20 g/L, four at 15 g/L, and five at 14.3 g/L) phase I experiments (consisting of independent sub-critical approaches) were performed between 2006 and 2007. The impact of the uncertainties on solution acidity and plutonium concentration made it difficult to demonstrate the positive temperature effect, requiring an additional phase II experiment (with a unique plutonium solution) from 22 to 28 °C that was performed in July 2007. This phase II experiment has shown the existence of a positive temperature effect of ~+5.17 pcm/°C (from 22 to 28 °C for a plutonium concentration of 14.3 g/L). It has recently been possible to confirm the results of this program with MORET 5 calculations by generating thermal scattering data S(α,β) at the correct experimental temperatures. This paper finally presents a fully documented experimental program highlighting the Plutonium Temperature Effect theoretically described in the literature. Its high level of precision and its “one-step” approach to criticality allowed it to show a significant positive temperature effect for a rather small variation of temperature (+6 °C). The order of magnitude of the effect was confirmed with Monte Carlo calculations using thermal scattering data for hydrogen in the solution produced by IRSN for the purpose of the comparison. Full article
Show Figures

Figure 1

51 pages, 4034 KiB  
Review
A Review of Opportunities and Methods for Recovery of Rhodium from Spent Nuclear Fuel during Reprocessing
J. Nucl. Eng. 2023, 4(3), 484-534; https://doi.org/10.3390/jne4030034 - 18 Jul 2023
Viewed by 1475
Abstract
Rhodium is one of the scarcest, most valuable, and useful platinum group metals, a strategically important material relied on heavily by automotive and electronics industries. The limited finite natural sources of Rh and exponentially increasing demands on these supplies mean that new sources [...] Read more.
Rhodium is one of the scarcest, most valuable, and useful platinum group metals, a strategically important material relied on heavily by automotive and electronics industries. The limited finite natural sources of Rh and exponentially increasing demands on these supplies mean that new sources are being sought to stabilise supplies and prices. Spent nuclear fuel (SNF) contains a significant quantity of Rh, though methods to recover this are purely conceptual at this point, due to the differing chemistry between SNF reprocessing and the methods used to recycle natural Rh. During SNF reprocessing, Rh partitions between aqueous nitric acid streams, where its speciation is complex, and insoluble fission product waste streams. Various techniques have been investigated for Rh recovery during SNF reprocessing for over 50 years, including solvent extraction, ion exchange, precipitation, and electrochemical methods, with tuneable approaches such as impregnated composites and ionic liquids receiving the most attention recently, assisted by more the comprehensive understanding of Rh speciation in nitric acid developed recently. The quantitative recovery of Rh within the SNF reprocessing ecosystem has remained elusive thus far, and as such, this review discusses the recent developments within the field, and strategies that could be applied to maximise the recovery of Rh from SNF. Full article
Show Figures

Figure 1

17 pages, 3031 KiB  
Article
Multi-Abnormality Attention Diagnosis Model Using One-vs-Rest Classifier in a Nuclear Power Plant
J. Nucl. Eng. 2023, 4(3), 467-483; https://doi.org/10.3390/jne4030033 - 08 Jul 2023
Viewed by 767
Abstract
Multi-abnormal events, referring to the simultaneous occurrence of multiple single abnormal events in a nuclear power plant, have not been subject to consideration because multi-abnormal events are extremely unlikely to occur and indeed have not yet occurred. Such events, though, would be more [...] Read more.
Multi-abnormal events, referring to the simultaneous occurrence of multiple single abnormal events in a nuclear power plant, have not been subject to consideration because multi-abnormal events are extremely unlikely to occur and indeed have not yet occurred. Such events, though, would be more challenging to diagnose than general single abnormal events, exacerbating the human error issue. This study introduces an efficient abnormality diagnosis model that covers multi-abnormality diagnosis using a one-vs-rest classifier and compares it with other artificial intelligence models. The multi-abnormality attention diagnosis model deals with multi-label classification problems, for which two methods are proposed. First, a method to effectively cluster single and multi-abnormal events is introduced based on the predicted probability distribution of each abnormal event. Second, a one-vs-rest classifier with high accuracy is employed as an efficient way to obtain knowledge on which particular multi-abnormal events are the most difficult to diagnose and therefore require the most attention to improve the multi-label classification performance in terms of data usage. The developed multi-abnormality attention diagnosis model can reduce human errors of operators due to excessive information and limited time when unexpected multi-abnormal events occur by providing diagnosis results as part of an operator support system. Full article
Show Figures

Figure 1

Back to TopTop