Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,669)

Search Parameters:
Journal = J. Compos. Sci.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1561 KiB  
Review
A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications
J. Compos. Sci. 2024, 8(1), 32; https://doi.org/10.3390/jcs8010032 - 15 Jan 2024
Viewed by 289
Abstract
Polymeric nanofibers have emerged as a captivating medium for crafting structures with biomedical applications. Spinning methods have garnered substantial attention in the context of medical applications and neural tissue engineering, ultimately leading to the production of polymer fibers. In comparison with polymer microfibers, [...] Read more.
Polymeric nanofibers have emerged as a captivating medium for crafting structures with biomedical applications. Spinning methods have garnered substantial attention in the context of medical applications and neural tissue engineering, ultimately leading to the production of polymer fibers. In comparison with polymer microfibers, polymer nanofibers boasting nanometer-scale diameters offer significantly larger surface areas, facilitating enhanced surface functionalization. Consequently, polymer nanofiber mats are presently undergoing rigorous evaluation for a myriad of applications, including filters, scaffolds for tissue engineering, protective equipment, reinforcement in composite materials, and sensors. This review offers an exhaustive overview of the latest advancements in polymer nanofiber processing and characterization. Additionally, it engages in a discourse regarding research challenges, forthcoming developments in polymer nanofiber production, and diverse polymer types and its applications. Electrospinning has been used to convert a broad range of polymers into nanoparticle nanofibers, and it may be the only approach with significant potential for industrial manufacturing. The basics of these spinning techniques, highlighting the biomedical uses as well as nanostructured fibers for drug delivery, disease modeling, regenerative medicine, tissue engineering, and bio-sensing have been explored. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, Volume II)
Show Figures

Figure 1

20 pages, 10998 KiB  
Article
The Behavior of Banyan (B)/Banana (Ba) Fibers Reinforced Hybrid Composites Influenced by Chemical Treatment on Tensile, Bending and Water Absorption Behavior: An Experimental and FEA Investigation
J. Compos. Sci. 2024, 8(1), 31; https://doi.org/10.3390/jcs8010031 - 13 Jan 2024
Viewed by 220
Abstract
Natural fiber-based composites are highly prioritized in present industries due to their properties and benefits over synthetic fibers. Due to their biodegradable nature, banyan and banana fibers were used for the present work. This paper deals with an experimental and FEA investigation of [...] Read more.
Natural fiber-based composites are highly prioritized in present industries due to their properties and benefits over synthetic fibers. Due to their biodegradable nature, banyan and banana fibers were used for the present work. This paper deals with an experimental and FEA investigation of the tensile and bending behavior of banyan (B) and banana (Ba)-reinforced composites with different volume fractions, such as 25B/25Ba, 30B/20Ba, and 35B/15Ba, with a 50% weight fraction of epoxy resin and different fiber orientations. The hybrid composites treated with a 5% NaOH solution have better results as compared to untreated hybrid composites, with a volume fraction of 30% banyan fibers and 20% banana fiber (30B/20Ba), giving greater tensile and flexural properties for both treated and untreated fiber composites when compared to other volume fraction composites at 0/0/0/0 orientation. The maximum tensile and bending strength was found in the 30B/20Ba volume fractions to be 63.37 MPa and 67.07 MPa, respectively. For treated fiber composites, water absorption increases with an increase in the duration of immersion in composites up to 144 h. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

16 pages, 2795 KiB  
Article
Prediction of the Bond Strength of Externally Bonded FRP Sheets Applied to Concrete via Grooves Technique Using Artificial Neural Networks
J. Compos. Sci. 2024, 8(1), 30; https://doi.org/10.3390/jcs8010030 - 12 Jan 2024
Viewed by 307
Abstract
The present study aims to fill a gap in the literature on the estimation of the bond strength of fiber reinforced polymer sheets bonded to concrete, via the externally bonded reinforcement on grooves (EBROG) technique, employing the curve-fitting on existing datasets in the [...] Read more.
The present study aims to fill a gap in the literature on the estimation of the bond strength of fiber reinforced polymer sheets bonded to concrete, via the externally bonded reinforcement on grooves (EBROG) technique, employing the curve-fitting on existing datasets in the literature and the methodology of Artificial Neural Networks (ANNs). Therefore, a dataset of 39 experimental results derived from EBROG technique is collected from the literature. A mathematical equation for the bond strength of FRP sheets applied on concrete via the EBROG technique was suggested using curve-fitting and general regression. The proposed mathematical equation is compared and validated with experimental results. The developed ANN model was constructed after testing diverse hidden layers and neurons to find the optimal predictions. The validation of the model is carried out using the experimental results and a statistical analysis is applied to assess the proposed mathematical equation and the proposed ANN model. Furthermore, a parametric study using the ANN model was also performed to investigate the influence of various factors on the bond strength of FRP sheets bonded to concrete. The parametric study proves that the bond strength increases with increasing the tensile stiffness per width, the FRP sheet width, and the concrete compressive strength; however, the effect of the Groove’s width and depth is found to be not monotonous. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

21 pages, 4649 KiB  
Article
Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization
J. Compos. Sci. 2024, 8(1), 29; https://doi.org/10.3390/jcs8010029 - 11 Jan 2024
Viewed by 542
Abstract
This research paper introduces an innovative methodology to produce biodegradable composite films by combining kaolin, polyvinyl alcohol (PVA), and potato starch (PS) using a solvent casting technique. The novelty of this study resides in the identification and implementation of optimal synthesis conditions, which [...] Read more.
This research paper introduces an innovative methodology to produce biodegradable composite films by combining kaolin, polyvinyl alcohol (PVA), and potato starch (PS) using a solvent casting technique. The novelty of this study resides in the identification and implementation of optimal synthesis conditions, which were achieved by utilizing the Response Surface Methodology—Central Composite Design. The study defines starch, polyvinyl alcohol (PVA), and kaolin as independent variables and examines their influence on important mechanical qualities, water absorption capacity, moisture content, and degradability as primary outcomes. The study establishes the ideal parameters as 5.5 weight percent Kaolin, 2.5 g of starch, and 3.5 g of PVA. These settings yield notable outcomes, including a tensile strength of 26.5 MPa, an elongation at break of 96%, a water absorption capacity of 21%, a moisture content of 3%, and a remarkable degradability of 48%. The study emphasizes that the augmentation of kaolin content has a substantial impact on many properties, including degradability, tensile strength, and elongation at break. Simultaneously, it leads to a reduction in the water absorption capacity and moisture content. The study’s novelty is reinforced by conducting an additional examination on the ideal composite film, which includes investigations using FTIR, TGA, and SEM-EDX techniques. The consistency between the predicted and experimental results is noteworthy, as it provides further validation for the prediction accuracy of Design Expert software’s quadratic equations. These equations effectively capture the complex interactions that exist between process parameters and selected responses. This study presents novel opportunities for the extensive utilization of PVA/PS composite films, including kaolin in various packaging scenarios, thereby significantly advancing sustainable packaging alternatives. The statistical analysis provides strong evidence supporting the relevance of the models, hence increasing our level of trust in the software’s prediction skills. This conclusion is based on a 95% confidence level and p-values that are below a threshold of 0.05. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

23 pages, 5605 KiB  
Review
Recent Advances in pH and Redox Responsive Polymer Nanocomposites for Cancer Therapy
J. Compos. Sci. 2024, 8(1), 28; https://doi.org/10.3390/jcs8010028 - 11 Jan 2024
Viewed by 312
Abstract
Cancer therapy currently focuses on personalized targeted treatments. A promising approach uses stimuli-responsive biomaterials for site-specific drug release, such as pH- and redox-triggered polymer nanocomposites. These materials respond to the tumor microenvironment, enhance efficacy, and reduce off-target effects. Cancer cells with anomalous properties [...] Read more.
Cancer therapy currently focuses on personalized targeted treatments. A promising approach uses stimuli-responsive biomaterials for site-specific drug release, such as pH- and redox-triggered polymer nanocomposites. These materials respond to the tumor microenvironment, enhance efficacy, and reduce off-target effects. Cancer cells with anomalous properties such as acidic cytosolic pH and elevated redox potential are targeted by these biomaterials. An imbalance in ions and biological thiols in the cytoplasm contributes to tumor growth. Functionalized polymer nanocomposites with large surface areas and specific targeting outperform conventional small-molecule materials. To overcome problems such as low bioavailability, uncontrolled drug release, and poor cell penetration, multifunctional nanomaterials make it easier for drugs to enter certain cellular or subcellular systems. High therapeutic efficacy is achieved through surface functionalization, site-specific targeting, and the use of stimuli-responsive components. In particular, pH and redox dual-stimuli-based polymeric nanocomposites for cancer therapeutics have scarcely been reported. This article provides recent progress in pH- and redox-responsive polymer nanocomposites for site-specific drug delivery in cancer therapy. It explores the design principles, fabrication methods, mechanisms of action, and prospects of these dual-stimuli-responsive biomaterials. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Graphical abstract

13 pages, 10066 KiB  
Article
Development and Characterization of Flax–Gypsum Composites
J. Compos. Sci. 2024, 8(1), 27; https://doi.org/10.3390/jcs8010027 - 11 Jan 2024
Viewed by 267
Abstract
Flax–gypsum composites are an emerging class of environmentally friendly materials that combine the mechanical properties of gypsum with the advantageous characteristics of flax fibers. The production of flax–gypsum composites involve the incorporation of flax fibers, derived from the flax plant, into gypsum matrix [...] Read more.
Flax–gypsum composites are an emerging class of environmentally friendly materials that combine the mechanical properties of gypsum with the advantageous characteristics of flax fibers. The production of flax–gypsum composites involve the incorporation of flax fibers, derived from the flax plant, into gypsum matrix systems. In order to create a uniform distribution of fibers within the gypsum matrix, the hand lay-up approach has been used to produce the specimens. The fiber content and orientation significantly influence the resulting mechanical and physical properties of the composites. Various tests were conducted on the samples, such as a flexural test, a compression test, a density test, a water absorption test, and a microscopy test. The addition of flax fibers imparts several desirable properties to the gypsum matrix. When combined with gypsum, these fibers enhanced the composite’s mechanical properties, such as flexural strength and compressive strength. The results indicated improved compression and flexural strengths due to effective load transfer within the matrix, for up to 10% of fiber loading. A decrease in composite density upon flax fiber addition results in a lighter material, enabling insights for various applications. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

15 pages, 26766 KiB  
Article
The Influence of Alkaline Pretreatment of Waste Nutshell for Use in Particulate Biocomposites
J. Compos. Sci. 2024, 8(1), 26; https://doi.org/10.3390/jcs8010026 - 11 Jan 2024
Viewed by 433
Abstract
The aim of this work was to determine how different types of alkaline pretreatment influence the properties of waste almond and hazelnut nutshell, as well as their compatibility with model inorganic geopolymer matrixes for the formation of biocomposites with potential use in civil [...] Read more.
The aim of this work was to determine how different types of alkaline pretreatment influence the properties of waste almond and hazelnut nutshell, as well as their compatibility with model inorganic geopolymer matrixes for the formation of biocomposites with potential use in civil engineering. For alkaline pretreatment, 3, 6 and 9% NaOH water solutions and milk of lime were used under different temperature and time conditions. The rise in the crystallinity index was confirmed by X-ray powder diffraction analysis, while the corroboration of the removal of amorphous and undesirable components was demonstrated through Fourier-transform infrared spectroscopy. Furthermore, the effectiveness of the pretreatments was confirmed via simultaneous differential thermal and thermogravimetric analysis, and the positive change in the morphology of the surface of the waste nutshell (WN) and the deposition of the desired phases was established using scanning electron microscopy. Surface free energy and adhesion parameters were calculated using the Owens, Wendt, Rabel and Kaelble method for WN as fillers and geopolymers as model novel inorganic binders. This research indicates that the 6% NaOH treatment is the optimal pretreatment process for preparing WN as the filler in combination with potassium and metakaolin geopolymer that has been cured at room temperature. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

16 pages, 14588 KiB  
Article
Quasi-Static Fracture Toughness and Damage Monitoring in Liquid Metal Reinforced Hybrid Composites
J. Compos. Sci. 2024, 8(1), 25; https://doi.org/10.3390/jcs8010025 - 11 Jan 2024
Viewed by 309
Abstract
An experimental study is performed to investigate the quasi-static fracture toughness and damage monitoring capabilities of liquid metal (75.5% Gallium/24.5% Indium) reinforced intraply glass/carbon hybrid composites. Two different layups (G-0, where glass fibers are along the crack propagation direction; C-0, where carbon fibers [...] Read more.
An experimental study is performed to investigate the quasi-static fracture toughness and damage monitoring capabilities of liquid metal (75.5% Gallium/24.5% Indium) reinforced intraply glass/carbon hybrid composites. Two different layups (G-0, where glass fibers are along the crack propagation direction; C-0, where carbon fibers are along the crack propagation direction) and two different weight percentages of liquid metal (1% and 2%) are considered in the fabrication of the composites. A novel four-probe technique is employed to determine the piezo-resistive damage response under mode-I fracture loading conditions. The effect of layups and liquid metal concentrations on fracture toughness and changes in piezo-resistance response is discussed. The C-composite without liquid metal demonstrated higher fracture toughness compared to that of the G-composite due to carbon fiber breakage. The addition of liquid metal decreases the fracture initiation toughness of both G- and C-composites. Scanning electron microscopy images show that liquid metal takes the form of large liquid metal pockets and small spherical droplets on the fracture surfaces. In both C- and G-composites, the peak resistance change of composites with 2% liquid metal is substantially lower than that of both no-liquid metal and 1% liquid metal composites. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

17 pages, 2611 KiB  
Article
Preparation, Characterization and Evaluation of Polyamide-Reduced Graphene Oxide as Selective Membranes for Water Purification
J. Compos. Sci. 2024, 8(1), 24; https://doi.org/10.3390/jcs8010024 - 10 Jan 2024
Viewed by 415
Abstract
Amidst the ongoing advancements in membrane technology, a leading method has come to the forefront. Recent research has emphasized the substantial influence of surface attributes in augmenting the effectiveness of thin-film membranes in water treatments. These studies reveal how surface properties play a [...] Read more.
Amidst the ongoing advancements in membrane technology, a leading method has come to the forefront. Recent research has emphasized the substantial influence of surface attributes in augmenting the effectiveness of thin-film membranes in water treatments. These studies reveal how surface properties play a crucial role in optimizing the performance of these membranes, further establishing their prominence in the field of membrane technology. This recognition stems from the precise engineering of surfaces, ensuring they meet the demanding requirements of advanced separation processes. This study utilizes polyamide as a discerning layer, applied atop a polysulfone support sheet through interfacial polymerization (IP) for membrane fabrication. The amounts in the various membranes were created to vary. The membrane’s permeability to water with significant salt rejection was enhanced, which improved its effectiveness. The polyamide (PA) membrane comprising graphene oxide (rGO, 0.015%) had a water permeability of 48.90 L/m2 h at 22 bar, which was much higher than the mean permeability of polyamide membranes (25.0 L/m2 h at 22 bar). On the other hand, the PA–rGO/CHIT membranes exhibited the lowest water permeability due to their decreased surface roughness. However, the membranes’ effectiveness in rejecting salts ranged from 80% to 95% for PA–rGO and PA–rGO/CHIT membranes. Full article
(This article belongs to the Special Issue Advances in Graphene-Based Composites: From Synthesis to Applications)
Show Figures

Figure 1

43 pages, 13005 KiB  
Review
Effects of Low-Velocity-Impact on Facesheet-Core Debonding of Natural-Core Composite Sandwich Structures—A Review of Experimental Research
J. Compos. Sci. 2024, 8(1), 23; https://doi.org/10.3390/jcs8010023 - 09 Jan 2024
Viewed by 437
Abstract
Sandwich composites are often used as primary load-bearing structures in various industries like aviation, wind, and marine due to their high strength-to-weight and stiffness-to-weight ratios, but they are vulnerable to damage from Low-velocity-impact (LVI) events like dropped tools, hail, and birdstrikes. This often [...] Read more.
Sandwich composites are often used as primary load-bearing structures in various industries like aviation, wind, and marine due to their high strength-to-weight and stiffness-to-weight ratios, but they are vulnerable to damage from Low-velocity-impact (LVI) events like dropped tools, hail, and birdstrikes. This often manifests in the form of Facesheet-Core-Debonding (FCD) and is often termed Barely-Visible-Impact-Damage (BVID), which is difficult to detect and can considerably reduce mechanical properties. In general, a balsa core sandwich is especially vulnerable to FCD under LVI as it has poorer adhesion than synthetic core materials. A cork core sandwich does show promise in absorbing LVI with low permanent indentation depth. This paper also reviews surface treatment/modification as a means of improving the adhesion of composite core and fiber materials: key concepts involved, a comparison of surface free energies of various materials, and research literature on surface modification of cork, glass, and carbon fibers. Since both balsa and cork have a relatively low surface free energy compared to other materials, this paper concludes that it may be possible to use surface modification techniques to boost adhesion and thus FCD on balsa or cork sandwich composites under LVI, which has not been covered by existing research literature. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites, Volume III)
Show Figures

Figure 1

18 pages, 8007 KiB  
Article
Tuning the Tensile and Shear Properties of a Scar Healing Composite for Mechanotherapy
J. Compos. Sci. 2024, 8(1), 22; https://doi.org/10.3390/jcs8010022 - 08 Jan 2024
Viewed by 394
Abstract
Conventional scar treatment options of single pressure garment therapy (PGT) or silicone gel sheeting (SGS, Cica-Care®, Smith and Nephew, London, UK) alone lack mechanical property tunability. This article discusses a scar healing composite (PGF-Biopor®AB, Dreve Otoplastik GmbH, Unna, Germany) [...] Read more.
Conventional scar treatment options of single pressure garment therapy (PGT) or silicone gel sheeting (SGS, Cica-Care®, Smith and Nephew, London, UK) alone lack mechanical property tunability. This article discusses a scar healing composite (PGF-Biopor®AB, Dreve Otoplastik GmbH, Unna, Germany) and how its mechanical properties can be tuned for improved mechanotherapy. A balance between compression and tension was achieved by tuning the tensile and shear properties, facilitating tension shielding and pressure redistribution for scar therapeutics. Biopor®AB-wrapping on biaxial-tensioned pressure garment fabric (PGF) allowed compression therapy and internal pressure redistribution. The Biopor®AB surface, with a coefficient of friction close to 1, strategically localizes stress for effective tension shielding. A substantial five-fold reduction in silicone tension, amounting to 1.060 N, achieves tension shielding and pressure redistribution. Simultaneously, a dynamic internal pressure-sharing mechanism distributes 0.222 kPa from each SPK-filament bundle, effectively managing internal pressure. Alongside the principle compression-silicone dual therapy, this composite design with dynamic internal pressure sharing and mechanical property tunability provides an additional pressure-relieving strategy for multiple scar therapeutics. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

11 pages, 4130 KiB  
Article
Friction Stir Spot Welding of Thin Aluminium Sheets to Polyamide 6: A Study of the Welding Parameters and Strategies
J. Compos. Sci. 2024, 8(1), 21; https://doi.org/10.3390/jcs8010021 - 08 Jan 2024
Viewed by 312
Abstract
The joining of aluminium alloy AA6082-T6 to polyamide 6 (PA6) by friction stir spot welding (FSSW) was investigated in the current work. Although previous studies can be found on the joining of polymers and metals by FSSW, welding using aluminium plates as thin [...] Read more.
The joining of aluminium alloy AA6082-T6 to polyamide 6 (PA6) by friction stir spot welding (FSSW) was investigated in the current work. Although previous studies can be found on the joining of polymers and metals by FSSW, welding using aluminium plates as thin as the ones used in this work (1 mm) was not found. The influence of the plunge depth (0.1 to 0.5 mm) and the dwell time (15 and 30 s) parameters on the welding results was studied. In general, the increase of these parameters led to the improvement of the maximum load of the joints under tensile-shear testing. Additionally, the feasibility of multiple spot welding was tested and proven. Finally, although most of the welds were performed with a pinless tool, a tool with a conical pin and a concave shoulder was used for comparison. The use of this more conventional tool resulted in joints easily broken by handling. Still, the potential of the conical pin tool was demonstrated. The different conditions were evaluated based on morphology and tensile-shear testing. The weld with the best mechanical behaviour was produced with multiple spot welding, which failed for a maximum load of about 2350 N. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

14 pages, 935 KiB  
Article
Study on Machining Quality in Abrasive Water Jet Machining of Jute-Polymer Composite and Optimization of Process Parameters through Grey Relational Analysis
J. Compos. Sci. 2024, 8(1), 20; https://doi.org/10.3390/jcs8010020 - 08 Jan 2024
Viewed by 329
Abstract
Abrasive Water Jet Machining (AWJM) is a popular machining method used to machine polymer matrix composites that are sensitive to temperature. This method is non-thermal, and each input parameter has a significant effect on output parameters, such as material removal rate, kerf width, [...] Read more.
Abrasive Water Jet Machining (AWJM) is a popular machining method used to machine polymer matrix composites that are sensitive to temperature. This method is non-thermal, and each input parameter has a significant effect on output parameters, such as material removal rate, kerf width, surface roughness, and the potential for delamination. To ensure high-quality machining, it is crucial to set these input parameters at their optimal level. This paper proposes a simple approach to predict the optimum process parameters of water jet machining operations on jute fiber-reinforced polymer composite (JFRPC). The process parameters considered are standoff distance (SOD), traverse speed (TS), and abrasive material flow rate (MFR). Conversely, surface roughness (Ra) and delamination (Da) are the output parameters. Process parameters are set using Taguchi’s L27 array, with consideration given to three levels of each input parameter. The best value for process parameters is found using grey relational analysis (GRA), and an ANOVA on GRA illustrates the impact of each input variable. After a confirmation test, it was found that the suggested parameters guarantee the best possible results. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

15 pages, 3683 KiB  
Article
Low-Pressure Plasma-Processed NiCo Metal–Organic Framework for Oxygen Evolution Reaction and Its Application in Alkaline Water Electrolysis Module
J. Compos. Sci. 2024, 8(1), 19; https://doi.org/10.3390/jcs8010019 - 07 Jan 2024
Viewed by 625
Abstract
Ar, Ar/H2 (95:5), and Ar/O2 (95:5) plasmas are used for treating the NiCo metal–organic framework (MOF), and the plasma-processed NiCo MOF is applied for catalyzing the oxygen evolution reaction (OER) in a 1 M KOH electrolyte. Linear sweep voltammetry measurements show [...] Read more.
Ar, Ar/H2 (95:5), and Ar/O2 (95:5) plasmas are used for treating the NiCo metal–organic framework (MOF), and the plasma-processed NiCo MOF is applied for catalyzing the oxygen evolution reaction (OER) in a 1 M KOH electrolyte. Linear sweep voltammetry measurements show that after plasma treatment with Ar/H2 (95:5) and Ar gases, the overpotential reaches 552 and 540 mV, respectively, at a current density of 100 mA/cm2. The increase in the double-layer capacitance further confirms the enhanced oxygen production activity. We test the Ar plasma-treated NiCo MOF as an electrocatalyst at the OER electrode and Ru as an electrocatalyst at the hydrogen evolution reaction (HER) electrode in the alkaline water electrolysis module. The energy efficiency of the electrolyzer with the Ar plasma-processed NiCo-MOF catalyst increases from 54.7% to 62.5% at a current density of 500 mA/cm2 at 25 °C. The alkaline water electrolysis module with the Ar plasma-processed catalyst also exhibits a specific energy consumption of 5.20 kWh/m3 and 4.69 kWh/m3 at 25 °C and 70 °C, respectively. The alkaline water electrolysis module performance parameters such as the hydrogen production rate, specific energy consumption, and energy efficiency are characterized at temperatures between 25 °C and 70 °C. Our experimental results show that the NiCo MOF is an efficient OER electrocatalyst for the alkaline water electrolysis module. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

23 pages, 9535 KiB  
Article
Thermomechanical Analysis of Thermoplastic Mono-Material Sandwich Structures with Honeycomb Core
J. Compos. Sci. 2024, 8(1), 18; https://doi.org/10.3390/jcs8010018 - 07 Jan 2024
Viewed by 339
Abstract
The application of fiber-reinforced thermoplastic mono-material sandwich panels has many advantages, such as recyclability, reduction in processing cycle times, integration of additional elements by means of welding, and a great potential for in-line production. The most efficient way to produce a curved thermoplastic [...] Read more.
The application of fiber-reinforced thermoplastic mono-material sandwich panels has many advantages, such as recyclability, reduction in processing cycle times, integration of additional elements by means of welding, and a great potential for in-line production. The most efficient way to produce a curved thermoplastic sandwich panel is thermoforming, which has several challenges. One of them is to achieve a higher thermal gradient in the panel. On the one hand, the temperature at the skin–core interface must exceed the softening point of the polymer to reach a sufficient bonding degree. On the other hand, the core should not be overheated and overloaded to avoid its collapse. Furthermore, several fiber distortions, such as wrinkles or buckles, can be developed during thermoforming. All these flaws have a negative impact on the mechanical performance of the sandwich structure. The objective of this study is the development of a simulation tool for the thermoforming process, which can replace the time-consuming trial-and-error-based method. Therefore, a coupled thermomechanical model was developed for a novel thermoplastic sandwich structure, which is able to predict the temperature distribution and its influence on the mechanical properties of the panel. Experimental trials were conducted to validate the thermomechanical forming model, which demonstrated a good agreement with numerical results. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

Back to TopTop