Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (217)

Search Parameters:
Journal = CivilEng

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1001 KiB  
Article
A Systematic Approach to Identify and Manage Interface Risks between Project Stakeholders in Construction Projects
by , and
CivilEng 2024, 5(1), 89-122; https://doi.org/10.3390/civileng5010005 - 15 Jan 2024
Abstract
Interface risks are inherent in every construction project from start to finish. Identifying and managing these risks effectively in every project phase is crucial for actualising project objectives. This paper shows a comprehensive framework showing several relationships between project stakeholders and how the [...] Read more.
Interface risks are inherent in every construction project from start to finish. Identifying and managing these risks effectively in every project phase is crucial for actualising project objectives. This paper shows a comprehensive framework showing several relationships between project stakeholders and how the interface risks between them that influence project execution are identified and managed for the overall construction project success. Firstly, a literature review on interfaces and interface risks and a discussion on how organisations managed interface risks were carried out, and secondly, the collection of quantitative data was conducted by means of structured online questionnaires. The sample consisted of 205 construction project professionals who were selected randomly. This group included individuals with various roles in the construction industry. The data were analysed using descriptive statistical methods, including factor analysis, reliability assessment, and calculations of frequencies and percentages. The results showed all the factors, work cultures, and organisational approaches that influence interface risk management and ways to identify and manage interface risks effectively. Effective stakeholder management is crucial for effective interface risk management since many interface risks are created by the numerous stakeholders involved in the project and the proposed frameworks will effectively mitigate the consequences and causes of interface risks. Effectively mitigating these risks involves effective stakeholder management, building information modelling volume strategy, and creating a virtual construction model during the construction phase; in addition, construction supply chain risks must be carefully identified during the interfaces establishment stages; interface risks must be carefully identified during the conceptualisation; and the planning, construction, and execution stages and standard methods and procedures must be defined to effectively identify and manage interface risks as the occur in the project lifecycle plus implementing the proposed risk mitigation frameworks. Full article
24 pages, 10976 KiB  
Article
Factors Affecting Properties of Polymer Grouted Sands
CivilEng 2024, 5(1), 65-88; https://doi.org/10.3390/civileng5010004 - 11 Jan 2024
Viewed by 220
Abstract
The aim of this research was to undertake laboratory testing to investigate the beneficial effects of epoxy resin grouts on the physical and mechanical properties of sands with a wide range of granulometric characteristics. Six sands of different particle size and uniformity coefficients [...] Read more.
The aim of this research was to undertake laboratory testing to investigate the beneficial effects of epoxy resin grouts on the physical and mechanical properties of sands with a wide range of granulometric characteristics. Six sands of different particle size and uniformity coefficients were grouted using epoxy resin solutions with three ratios of epoxy resin to water (3.0, 2.0 and 1.5). A set of unconfined compressive strength tests were conducted on the grouted samples at different curing periods and a set of long-term unconfined compressive creep tests in dry and wet conditions after 180 days of curing were also carried out in order to evaluate the development of the mechanical properties of the sands, as well as the impact of water on them. The findings of the investigation showed that epoxy resin resulted in appreciable strength values in the specimens, especially those of fine sands or well graded sands, grouted with the different epoxy resin grouts. Whilst the higher compressive strength and elastic modulus values at the age of 180 days were obtained for the finer sand, which ranged from 2.6 to 5.6 MPa and 216 to 430 MPa, respectively, the lower compressive strength and elastic modulus values were attained for the coarser sand with low values of the coefficient of uniformity, which varied from 0.68 to 2.2 MPa and 75 to 185 MPa, respectively. Moreover, all grouted sands showed stable long-term creep behaviour, with high values of the creep limit ranging from 67.5 to 80% of compressive strength. The presence of water had a negative marginal effect in the majority of the grouted specimens. In terms of physical properties, the permeability and porosity were estimated. The permeability of fine sands or well graded sands was decreased by two to four orders of magnitude. Using laboratory results and regression analysis, three mathematical equations were developed that relate each of the dependent variables of compressive strength, elastic modulus and coefficient of permeability to particular explanatory variables. Full article
Show Figures

Figure 1

24 pages, 11781 KiB  
Article
High Glass Waste Incorporation towards Sustainable High-Performance Concrete
CivilEng 2024, 5(1), 41-64; https://doi.org/10.3390/civileng5010003 - 10 Jan 2024
Viewed by 186
Abstract
The use of waste as supplementary cementitious materials (SCMs) in concrete is already widespread, with glass waste being an increasingly used option. The utilization of glass waste as a partial substitute for cement in small proportions has shown satisfactory outcomes. Nevertheless, substituting cement [...] Read more.
The use of waste as supplementary cementitious materials (SCMs) in concrete is already widespread, with glass waste being an increasingly used option. The utilization of glass waste as a partial substitute for cement in small proportions has shown satisfactory outcomes. Nevertheless, substituting cement in high proportions requires further investigation. Experimental research was carried out on the mechanical and durability properties of concrete with the replacement of cement by glass powder (GP), at a high volume equal to 50%. Binder content (cement plus GP) varied from 300 to 500 kg/m3. The results are promising regarding the use of the high volume of GP in high-performance concretes. The specimens with 500 kg/m3 of binder (50% of which was GP-G250) achieved almost 55 MPa at 28 days. The specimen with the lowest resistance was G150, with 32 MPa. This result may be related to the high pozzolanic activity index of the used GP. The specimens with GP showed satisfactory performance regarding chloride migration, with diffusion coefficients always below those of the reference specimens. The G250 concrete showed a reduction of 58%. Regarding open porosity, concretes with 50% GP had a lower porosity than the reference concretes. The smallest reduction (21%) occurred in the G150 concrete. The reduction in porosity provided by the fineness of the GP may be the main cause of this high performance. Concerning capillary absorption, the GP concretes have a reduction that varies between 47% for G150 and 67% for G250. This fact may be related to the existence of a larger quantity of larger-sized capillary pores in the reference concretes. Full article
(This article belongs to the Special Issue High-Performance Concrete and Durability of Concrete Structures)
Show Figures

Figure 1

12 pages, 2738 KiB  
Article
Optimizing Sustainability of Concrete Structures Using Tire-Derived Aggregates: A Performance Improvement Study
CivilEng 2024, 5(1), 30-40; https://doi.org/10.3390/civileng5010002 - 29 Dec 2023
Viewed by 328
Abstract
Tire-derived aggregate concrete (TDAC), or rubberized concrete, is gaining ground as an eco-friendly option in civil engineering. By substituting traditional coarse aggregates with recycled rubber tires, TDAC offers a greener choice with excellent energy absorption capabilities. This leads to robust structures and reduced [...] Read more.
Tire-derived aggregate concrete (TDAC), or rubberized concrete, is gaining ground as an eco-friendly option in civil engineering. By substituting traditional coarse aggregates with recycled rubber tires, TDAC offers a greener choice with excellent energy absorption capabilities. This leads to robust structures and reduced upkeep expenses. Nonetheless, TDAC’s lower strength than regular concrete requires a delicate balance between energy absorption and strength. This study investigates two enhancements to TDAC performance: (a) the impact of sodium hydroxide (NaOH) solution pretreatment and SikaLatex bonding agent addition on TDAC’s compressive strength, and (b) the use of varying water–cement ratios and superplasticizer to enhance TDAC’s mechanical properties. This study involves concrete cylinder compression tests and the creation of strength estimation equations. Results show that NaOH-treated tire-derived aggregate (TDA) boosts workability, increasing slump by 4.45 cm (1.75 in), yet does not significantly enhance compressive strength, causing a 34% reduction. Conversely, combining NaOH pretreatment with Sikalatex bonding agent enhances workability by 28% and boosts compressive strength by 21% at the same water-cement ratio. To optimize performance, it is advised to employ modified TDA concrete with a water–cement ratio under 0.34 and superplasticizer. These findings highlight the potential of modified TDA concrete in sustainable and seismic-resistant designs. Full article
Show Figures

Figure 1

31 pages, 4164 KiB  
Article
Scene Understanding for Dimensional Compliance Checks in Mixed-Reality
CivilEng 2024, 5(1), 1-29; https://doi.org/10.3390/civileng5010001 - 27 Dec 2023
Viewed by 440
Abstract
Building inspections are critical for ensuring compliance with construction standards, but conventional methods, often manual, face challenges in efficiency and consistency due to heavy reliance on human factors. Mixed-reality (MR) solutions could potentially address these challenges as they reportedly achieve good efficiency and [...] Read more.
Building inspections are critical for ensuring compliance with construction standards, but conventional methods, often manual, face challenges in efficiency and consistency due to heavy reliance on human factors. Mixed-reality (MR) solutions could potentially address these challenges as they reportedly achieve good efficiency and accuracy in mapping indoor environments. This research investigates the potential of utilizing a wearable MR device to perform dimensional checks through edge computing of device sensor data, reducing the reliance on human factors. The accuracy of MR-computed dimensions against ground truth data for common building elements was assessed. Results indicate that MR-computed dimensions align well with ground truth for simple objects, but complex objects such as staircases presented limitations in achieving satisfactory results. If-then checks applied to MR-computed dimensions for automated detection of non-compliance were successfully experimented. However, automating compliance checks for standards with complex rules requires further investigation. This research sheds light on the potential of MR solutions for building inspections and highlights future research directions to enhance its applicability and effectiveness in the construction industry. Full article
Show Figures

Figure 1

20 pages, 6128 KiB  
Article
Developing a Sprayed-Glass Fiber-Reinforced Polymer Retrofitting System for Decommissioned Wooden Utility Poles
CivilEng 2023, 4(4), 1243-1262; https://doi.org/10.3390/civileng4040069 - 18 Dec 2023
Viewed by 413
Abstract
Wooden utility poles are vulnerable to degradation and decay, which requires maintenance or replacement. The strengthening and retrofitting techniques for wooden poles are either prone to corrosion or encountering installation difficulties. However, the use of sprayed fiber-reinforced polymer (FRP) composites seems to be [...] Read more.
Wooden utility poles are vulnerable to degradation and decay, which requires maintenance or replacement. The strengthening and retrofitting techniques for wooden poles are either prone to corrosion or encountering installation difficulties. However, the use of sprayed fiber-reinforced polymer (FRP) composites seems to be a viable solution as it has proven its efficiency and applicability for reinforced concrete members and connections. This study includes a comprehensive experimental program where the mechanical properties of the sprayed-glass FRP (GFRP) composite was evaluated in terms of tensile, compressive and shear strength, in addition to its bond strength to wood and confinement efficiency. Afterwards, the results of the material testing phase were implemented on full-scale old utility poles to evaluate their structural performance with varying composite thicknesses and sprayed zone lengths. The behavior of the retrofitted poles reflected remarkable effectiveness for the sprayed-GFRP composite and highlighted the need for a design model for the optimum length for the sprayed zone. Two simplified analytical models were introduced which predicted the failure loads and locations for the tested poles and estimated the required length for the retrofitted zone, which all agreed well with the experimental results of the tested poles. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

10 pages, 865 KiB  
Review
Review of the Structural Performance of Beams and Beam–Column Joints with Openings
CivilEng 2023, 4(4), 1233-1242; https://doi.org/10.3390/civileng4040068 - 08 Dec 2023
Viewed by 756
Abstract
The need for openings in RC structures has increased, but their presence significantly affects the performance and strength of the structures. While small openings can be managed with additional reinforcement, dealing with large openings in reinforced or pre-stressed concrete members is challenging due [...] Read more.
The need for openings in RC structures has increased, but their presence significantly affects the performance and strength of the structures. While small openings can be managed with additional reinforcement, dealing with large openings in reinforced or pre-stressed concrete members is challenging due to the lack of technical information and specific guidelines. This research provides an up-to-date overview of RC beam–column joints that incorporate web openings and evaluates appropriate strengthening methods. The research discusses the classification of openings in RC beams, considering factors such as size and shape. Additionally, it examines the failure modes of RC beams in relation to flexural and shear behavior when web openings are present. The research also provides a comprehensive review of various strengthening techniques, outlining their advantages and disadvantages. In conclusion, larger openings in beams result in reduced strength, while increasing loads lead to higher deflection, strain, and cracking until failure. Openings are classified as small or large based on their impact on beam behavior. Multiple smaller openings are preferred over a single large opening when size becomes excessive. Optimal placement is in the middle of the section to ensure adequate concrete coverage for the chords. Sufficient concrete and depth are essential for ultimate compression during bending and effective shear reinforcement. Full article
Show Figures

Figure 1

19 pages, 3831 KiB  
Article
Sediment Transport Capacity in a Gravel-Bed River with a Sandy Tributary
CivilEng 2023, 4(4), 1214-1232; https://doi.org/10.3390/civileng4040067 - 30 Nov 2023
Viewed by 626
Abstract
Bedload transport in a river is a deeply analyzed problem, with many methodologies available in the literature. However, most of the existing methods were developed for reaches of rivers rather than for confluences and are suitable for a particular type of material, which [...] Read more.
Bedload transport in a river is a deeply analyzed problem, with many methodologies available in the literature. However, most of the existing methods were developed for reaches of rivers rather than for confluences and are suitable for a particular type of material, which makes them very inaccurate in cases where the sediments are comprised of a mix of different types of soil. This study considers the effect of two different bed sediment sizes, gravel and sand, in relation to bed load transport in a confluence. Five well-known and validated equations (namely Meyer-Peter and Müller, Parker + Engelund and Hansen, Ackers and White, and Yang) are applied to the case study of the Tagus–Alberche rivers confluence (in Talavera de la Reina, Spain), where main and tributary rivers transport different materials (sand and gravel). Field works in the area of the confluence were conducted, and a set of alluvial samples were collected and analyzed. The previously mentioned methods were employed to analyze the geomorphology in the confluence area and downstream of it under different flooding scenarios, concluding different trends in terms of deposition/erosion in the area under historic flooding scenarios. When the trends show erosion, all methods are very consistent in terms of numerical predictions. However, the results present high disparity in the estimated values when the predictions suggest deposition, with Parker + Engelund and Hansen yielding the highest volumes and Meyer-Peter and Müller the lowest (the latter being around 1% of the former). Yang and Ackers and White predict deposits in the same range in all cases (around 15% of Parker and Engelund Hansen). Yang’s formula was found to be suitable for the confluences of rivers with different materials, allowing for the estimation of sediment transport for different grain sizes. The effect of different flow regimes has been analyzed with the application of Yang’s formula to the Tagus-Alberche confluence. Full article
(This article belongs to the Section Water Resources and Coastal Engineering)
Show Figures

Figure 1

16 pages, 13924 KiB  
Article
The Effect of Temperature on the Structural Build-Up of Cement Pastes
CivilEng 2023, 4(4), 1198-1213; https://doi.org/10.3390/civileng4040066 - 28 Nov 2023
Viewed by 414
Abstract
The structural build-up of cementitious materials is the subject of more and more attention since it conditions several processes such as formwork pressure and multi-layer casting. However, this phenomenon originating from flocculation and chemical changes is complex and its reversibility is not clearly [...] Read more.
The structural build-up of cementitious materials is the subject of more and more attention since it conditions several processes such as formwork pressure and multi-layer casting. However, this phenomenon originating from flocculation and chemical changes is complex and its reversibility is not clearly elucidated. The aim of this paper is to examine the effect of temperature on the reversibility of structural build-up. The results show that irreversible structural build-up remains negligible despite a rise in temperature. It represents between 0.5–7.3% of the total structural build-up. The addition of SCMs allows for a decrease in this irreversible structural build-up. Therefore, a large part of the chemical contribution is expected to be reversible. The effect of temperature can be explained by the increase in the dissolution rate leading to an increase in flocculation and to the bridging effect induced by early hydrates. Finally, the results suggest that the interparticle distance could be the key parameter governing the irreversibility of structural build-up. Full article
Show Figures

Figure 1

16 pages, 6602 KiB  
Article
Quantitative Contribution of Timber Ring Beams in the Dynamic Response of Adobe Masonry Structures
CivilEng 2023, 4(4), 1182-1197; https://doi.org/10.3390/civileng4040065 - 27 Nov 2023
Viewed by 591
Abstract
Earthen structures made of adobe bricks are complex systems that making the identification of their behavior difficult, especially when they have to sustain lateral forces such as seismic forces. This paper presents a numerical investigation for the assessment of the structural response of [...] Read more.
Earthen structures made of adobe bricks are complex systems that making the identification of their behavior difficult, especially when they have to sustain lateral forces such as seismic forces. This paper presents a numerical investigation for the assessment of the structural response of unreinforced adobe masonry structures and how the installation of wooden ring beams contributes to their overall resistance. In the framework of the numerical investigation, finite element models were created to simulate the response of an adobe building with and without the presence of wooden ring beams. The test building is located in Cyprus, in the South Eastern Mediterranean region which is a seismic area. The material properties used in this study were found in the literature and were based on experimental data for local materials. The models were subjected to earthquake loads, performing time history analyses for the calculation of pertinent displacements and stresses. The findings indicate that integrating wooden ring beams reduces the fundamental period by 6% and modifies the building’s seismic behavior. This modification is evident not just in the magnitude of the stresses but also in their distribution, leading to a stratified stress profile. Peak stresses are primarily concentrated around the ring beams. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

13 pages, 4546 KiB  
Article
The Static and Dynamic Behavior of Steel Storage Tanks over Different Types of Clay Soil
CivilEng 2023, 4(4), 1169-1181; https://doi.org/10.3390/civileng4040064 - 22 Nov 2023
Viewed by 473
Abstract
Steel storage tanks are widely used in different fields. Most of these tanks contain hazardous materials, which may lead to disasters and environmental damage for any design errors. There are many reasons which cause the failure of these tanks such as excessive base [...] Read more.
Steel storage tanks are widely used in different fields. Most of these tanks contain hazardous materials, which may lead to disasters and environmental damage for any design errors. There are many reasons which cause the failure of these tanks such as excessive base plate settlement, shear failure of soil, liquid sloshing, and buckling of the tank shell. In this study, five models of above-ground steel storage tanks resting over different types of clay soils (medium-stiff clay, stiff clay, and very stiff clay soils) are analyzed using the finite element program ADINA under the effect of static and dynamic loading. The soil underneath the tank is truly simulated using a 3D solid (porous media) element and the used material model is the Cam-clay soil model. The fluid in the tank is modeled depending on the Navier–Stokes fluid equation. Moreover, the earthquake record used in this analysis is the horizontal component of the Loma Prieta Earthquake. The analyzed tanks are circular steel tanks with the same height (10 m) and different diameters (ranging from 15 m to 40 m). The soil under the tanks has a noticeable effect on the dynamic behavior of the studied tanks. The tanks resting over the medium-stiff clay (the weakest soil) give a lower permanent settlement after the earthquake because of its low elastic modulus which leads to the absorption of the earthquake waves in comparison to the other types of soil. There are 29.6% and 35.6% increases in the peak dynamic stresses under the tanks in the cases of stiff clay and very stiff clay soils, respectively. The maximum values of the dynamic vertical stresses occur at a time around 13.02 s, which is close to the peak ground acceleration of the earthquake. Full article
(This article belongs to the Special Issue Feature Papers in CivilEng)
Show Figures

Figure 1

12 pages, 2522 KiB  
Article
Harnessing Virtual Reality to Mitigate Heat-Related Injuries in Construction Projects
CivilEng 2023, 4(4), 1157-1168; https://doi.org/10.3390/civileng4040063 - 10 Nov 2023
Viewed by 599
Abstract
The construction industry has witnessed a surge in heat-related accidents alongside rising summertime temperatures, exposing workers to potential injuries. The absence of specific heat stress standards by the Occupational Safety and Health Administration (OSHA) underscores the urgent need for more comprehensive and interactive [...] Read more.
The construction industry has witnessed a surge in heat-related accidents alongside rising summertime temperatures, exposing workers to potential injuries. The absence of specific heat stress standards by the Occupational Safety and Health Administration (OSHA) underscores the urgent need for more comprehensive and interactive educational materials to prevent such incidents in construction projects. This study proposes the adoption of an interactive Virtual Reality (VR) application to offer construction workers realistic and effective training, mitigating heat-related injuries. During the training sessions, VR headsets were utilized to immerse workers in two lifelike scenarios: (1) Addressing self-care during heat exhaustion; (2) Assisting a coworker experiencing heat exhaustion. A case study evaluated the effectiveness of the proposed VR training for 82 construction workers from two companies. Company A had traditional training, while Company B used VR training. Both groups took pre- and post-assessment surveys with six questions. The pre-assessment found no significant knowledge difference between the groups. After training, VR showed a significant reduction in incorrect answers compared to traditional training. Statistical tests confirmed the superiority of VR training (p-value = 0.00152 < 0.05), suggesting its effectiveness in preventing heat-related injuries in construction compared to traditional training methods. Full article
Show Figures

Figure 1

14 pages, 10950 KiB  
Article
Analysis of Axial Acceleration for the Detection of Rail Squats in High-Speed Railways
CivilEng 2023, 4(4), 1143-1156; https://doi.org/10.3390/civileng4040062 - 01 Nov 2023
Viewed by 793
Abstract
A squat is a type of fatigue defect caused by short-wavelength rotational contact; if squats are detected early, the maintenance cost of the track can be effectively reduced. In this paper, a method for the early detection of squats is presented based on [...] Read more.
A squat is a type of fatigue defect caused by short-wavelength rotational contact; if squats are detected early, the maintenance cost of the track can be effectively reduced. In this paper, a method for the early detection of squats is presented based on ABA (axle box acceleration) and frequency signal processing techniques. To increase the measurement sensitivity for the squat, ABA was used to measure the longitudinal vibration. Compared to vertical ABA, longitudinal ABA does not include vibrations from rail fasteners and sleepers, so it is possible to effectively measure the vibration signal in relation to the impact of the rail. In this paper, vibration data were measured and analyzed by installing a 3-axis accelerometer on the wheel axle of the KTX; squat signals were more effectively extracted using the longitudinal vibration measurement presented above. The algorithm to detect the position of squats was developed based on wavelet spectrum analysis. This study was verified for the section of a domestic high-speed line, and as a result of conducting field verification for this section, squats were detected with a hit rate of about 88.2%. The main locations where the squats occurred were the rail welds and the joint section, and it was confirmed that unsupported sleepers occurred at locations where the squats occurred in some sections. Full article
(This article belongs to the Section Geotechnical, Geological and Environmental Engineering)
Show Figures

Figure 1

22 pages, 1841 KiB  
Article
Ranking of Variation Orders Caused by the Owners of Construction Projects in Saudi Arabia Using Statistical and Fuzzy-Based Methods
CivilEng 2023, 4(4), 1121-1142; https://doi.org/10.3390/civileng4040061 - 24 Oct 2023
Viewed by 760
Abstract
One common theme in the international construction sector is project variation, which influences project outcomes. This study argued that variation could occur during the lifecycle of a construction project that might affect the contracted project success criteria (PSC), including cost, time, quality, or [...] Read more.
One common theme in the international construction sector is project variation, which influences project outcomes. This study argued that variation could occur during the lifecycle of a construction project that might affect the contracted project success criteria (PSC), including cost, time, quality, or scope parameters. These variations can originate from the owner, consultant, contractor, or external factors. The construction industry is a critical partner in operationalizing and implementing the long-term sustainability objectives of Vision 2030 in the Kingdom of Saudi Arabia (KSA). The present study identified 18 factors that can cause variation orders by the owners of construction projects and evaluated them using statistical and fuzzy-based methods. To estimate the influence of variation orders on PSC in Saudi Arabia, over 70 experienced professionals, including project managers (58%), engineers (26%), and strategic management officers (16%) working in the construction industry evaluated the identified factors through a questionnaire survey. A 1–4 Likert scale, no impact (1) to high impact (4) on PSC, was used to rank identified factors. Analysis of variance and Tukey tests found no statistically significant difference between the respondents’ opinions. Out of the four PSC, cost and time with 14 out of 18 factors obtaining scores higher than “3” superseded quality with seven and scope with six factors. The Fuzzy Synthetic Evaluation identified inadequate planning, managerial corruption, the method of lowest bidding procurement, the inadequate experience of owner’s staff, additional work added by the owners, delayed starts, mode of financing and payments, and public works contract rigidity as the most critical factors affecting PSC of the construction projects in the view of participated stakeholders. Conversely, shortening the project period, long intervals between design and project initiation, and restrictions against foreign companies were identified as the least important factors. The study helps stakeholders achieve long-term sustainability by focusing on the top-ranked factors in KSA’s construction industry and the Gulf Region with similar working environments, rules, and regulations. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

23 pages, 6586 KiB  
Article
Formwork Engineering for Sustainable Concrete Construction
CivilEng 2023, 4(4), 1098-1120; https://doi.org/10.3390/civileng4040060 - 17 Oct 2023
Cited by 1 | Viewed by 2017
Abstract
This study provides a comprehensive review of the engineering challenges of formwork in concrete construction. The paper investigates different formwork systems, their design based on form pressure, and the difficulties of form stripping. Alternative binders are gaining more and more interest by opening [...] Read more.
This study provides a comprehensive review of the engineering challenges of formwork in concrete construction. The paper investigates different formwork systems, their design based on form pressure, and the difficulties of form stripping. Alternative binders are gaining more and more interest by opening new opportunities for sustainable concrete materials and their impact on form pressure and concrete setting is also investigated in this paper. The discussion involves several engineering challenges such as sustainability, safety, and economy, while it also explores previous case studies, and discusses future trends in formwork design. The findings pinpoint that choosing an appropriate formwork system depends significantly on project-specific constraints and that the development of innovative materials and technologies presents significant benefits but also new challenges, including the need for training and regulation. Current trends in formwork design and use show promising possibilities for the integration of digital technologies and the development of sustainable and ‘smart’ formwork systems. Continued research within the field has the possibility to explore new formwork materials and technologies, which will contribute to the implementation of more effective and sustainable practices in concrete construction. Full article
(This article belongs to the Special Issue Feature Papers in CivilEng)
Show Figures

Figure 1

Back to TopTop