Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,750)

Search Parameters:
Journal = Antibiotics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3059 KiB  
Article
Endotoxin-Induced Sepsis on Ceftriaxone-Treated Rats’ Ventilatory Mechanics and Pharmacokinetics
Antibiotics 2024, 13(1), 83; https://doi.org/10.3390/antibiotics13010083 - 15 Jan 2024
Abstract
Sepsis can trigger acute respiratory distress syndrome (ARDS), which can lead to a series of physiological changes, modifying the effectiveness of therapy and culminating in death. For all experiments, male Wistar rats (200–250 g) were split into the following groups: control and sepsis-induced [...] Read more.
Sepsis can trigger acute respiratory distress syndrome (ARDS), which can lead to a series of physiological changes, modifying the effectiveness of therapy and culminating in death. For all experiments, male Wistar rats (200–250 g) were split into the following groups: control and sepsis-induced by endotoxin lipopolysaccharide (LPS); the control group received only intraperitoneal saline or saline + CEF while the treated groups received ceftriaxone (CEF) (100 mg/kg) IP; previously or not with sepsis induction by LPS (1 mg/kg) IP. We evaluated respiratory mechanics, and alveolar bronchial lavage was collected for nitrite and vascular endothelial growth factor (VEGF) quantification and cell evaluation. For pharmacokinetic evaluation, two groups received ceftriaxone, one already exposed to LPS. Respiratory mechanics shows a decrease in total airway resistance, dissipation of viscous energy, and elastance of lung tissues in all sepsis-induced groups compared to the control group. VEGF and NOx values were higher in sepsis animals compared to the control group, and ceftriaxone was able to reduce both parameters. The pharmacokinetic parameters for ceftriaxone, such as bioavailability, absorption, and terminal half-life, were smaller in the sepsis-induced group than in the control group since clearance was higher in septic animals. Despite the pharmacokinetic changes, ceftriaxone showed a reduction in resistance in the airways. In addition, CEF lowers nitrite levels in the lungs and acts on their adverse effects, reflecting pharmacological therapy of the disease. Full article
Show Figures

Figure 1

15 pages, 3887 KiB  
Article
Effects of Antibiotic Residues on Fish Gut Microbiome Dysbiosis and Mucosal Barrier-Related Pathogen Susceptibility in Zebrafish Experimental Model
Antibiotics 2024, 13(1), 82; https://doi.org/10.3390/antibiotics13010082 - 15 Jan 2024
Viewed by 21
Abstract
The symbiotic community of microorganisms in the gut plays an important role in the health of the host. While many previous studies have been performed on the interactions between the gut microbiome and the host in mammals, studies in fish are still lacking. [...] Read more.
The symbiotic community of microorganisms in the gut plays an important role in the health of the host. While many previous studies have been performed on the interactions between the gut microbiome and the host in mammals, studies in fish are still lacking. In this study, we investigated changes in the intestinal microbiome and pathogen susceptibility of zebrafish (Danio rerio) following chronic antibiotics exposure. The chronic antibiotics exposure assay was performed on zebrafish for 30 days using oxytetracycline (Otc), sulfamethoxazole/trimethoprim (Smx/Tmp), or erythromycin (Ery), which are antibiotics widely used in the aquaculture industry. The microbiome analysis indicated that Fusobacteria, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in the gut microbiome of the zebrafish used in this study. However, in Smx/Tmp-treated zebrafish, the compositions of Fusobacteria and Proteobacteria were changed significantly, and in Ery-treated zebrafish, the compositions of Proteobacteria and Firmicutes were altered significantly. Although alpha diversity analysis showed that there was no significant difference in the richness, beta diversity analysis revealed a community imbalance in the gut microbiome of all chronically antibiotics-exposed zebrafish. Intriguingly, in zebrafish with dysbiosis in the gut microbiome, the pathogen susceptibility to Edwardsiella piscicida, a representative Gram-negative fish pathogen, was reduced. Gut microbiome imbalance resulted in a higher count of goblet cells in intestinal tissue and an upregulation of genes related to the intestinal mucosal barrier. In addition, as innate immunity was enhanced by the increased mucosal barrier, immune and stress-related gene expression in the intestinal tissue was downregulated. In this study, we provide new insight into the effect of gut microbiome dysbiosis on pathogen susceptibility. Full article
(This article belongs to the Special Issue Use of Antibiotics in Animals and Antimicrobial Resistance)
Show Figures

Graphical abstract

15 pages, 320 KiB  
Article
In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria—A Pilot Study in Bulgaria
Antibiotics 2024, 13(1), 81; https://doi.org/10.3390/antibiotics13010081 - 15 Jan 2024
Viewed by 112
Abstract
To solve the problem with pan-drug resistant and extensively drug-resistant Gram-negative microbes, newly approved drugs such as ceftazidime/avibactam, cefiderocol, plazomicin, meropenem/vaborbactam, and eravacycline have been introduced in practice. The aim of the present study was to collect carbapenemase-producing clinical Enterobacterales isolates, to characterize [...] Read more.
To solve the problem with pan-drug resistant and extensively drug-resistant Gram-negative microbes, newly approved drugs such as ceftazidime/avibactam, cefiderocol, plazomicin, meropenem/vaborbactam, and eravacycline have been introduced in practice. The aim of the present study was to collect carbapenemase-producing clinical Enterobacterales isolates, to characterize their carbapenemase genes and clonal relatedness, and to detect their susceptibility to commonly used antimicrobials and the above-mentioned newly approved antibiotics. Sixty-four carbapenemase producers were collected in a period of one year from four Bulgarian hospitals, mainly including Klebsiella pneumoniae (89% of the isolates) and also single Proteus mirabilis, Providencia stuartii and Citrobacter freundii isolates. The main genotype was blaNDM-1 (in 61%), followed by blaKPC-2 (23%), blaVIM-1 (7.8%) and blaOXA-48 (7.8%). Many isolates showed the presence of ESBL (blaCTX-M-15/-3 in 76.6%) and AmpC (blaCMY-4 in 37.5% or blaCMY-99 in 7.8% of isolates). The most common MLST type was K. pneumoniae ST11 (57.8%), followed by ST340 (12.5%), ST258 (6.3%) and ST101 (6.3%). The isolates were highly resistant to standard-group antibiotics, except they were susceptible to tigecycline (83.1%), colistin (79.7%), fosfomycin (32.8%), and aminoglycosides (20.3–35.9%). Among the newly approved compounds, plazomicin (90.6%) and eravacycline (76.3%) showed the best activity. Susceptibility to ceftazidime/avibactam and meropenem/vaborbactam was 34.4% and 27.6%, respectively. For cefiderocol, a large discrepancy was observed between the percentages of susceptible isolates according to EUCAST susceptibility breakpoints (37.5%) and those of CLSI (71.8%), detected by the disk diffusion method. This study is the first report to show patterns of susceptibility to five newly approved antibiotics among molecularly characterized isolates in Bulgaria. The data may contribute to both the improvement of treatment of individual patients and the choice of infection control strategy and antibiotic policy. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
12 pages, 1724 KiB  
Article
Extracellular Vesicles from a Biofilm of a Clinical Isolate of Candida albicans Negatively Impact on Klebsiella pneumoniae Adherence and Biofilm Formation
Antibiotics 2024, 13(1), 80; https://doi.org/10.3390/antibiotics13010080 - 15 Jan 2024
Viewed by 128
Abstract
The opportunistic human fungal pathogen Candida albicans produces and releases into the surrounding medium extracellular vesicles (EVs), which are involved in some processes as communication between fungal cells and host–pathogen interactions during infection. Here, we have conducted the isolation of EVs produced by [...] Read more.
The opportunistic human fungal pathogen Candida albicans produces and releases into the surrounding medium extracellular vesicles (EVs), which are involved in some processes as communication between fungal cells and host–pathogen interactions during infection. Here, we have conducted the isolation of EVs produced by a clinical isolate of C. albicans during biofilm formation and proved their effect towards the ability of the Gram-negative bacterial pathogen Klebsiella pneumoniae to adhere to HaCaT cells and form a biofilm in vitro. The results represent the first evidence of an antagonistic action of fungal EVs against bacteria. Full article
Show Figures

Figure 1

10 pages, 258 KiB  
Article
Successful Clinical Avoidance of Colorectal Anastomotic Leakage through Local Decontamination
Antibiotics 2024, 13(1), 79; https://doi.org/10.3390/antibiotics13010079 - 15 Jan 2024
Viewed by 158
Abstract
Aim: An anastomotic leak is an unpredictable postoperative complication during recovery from colorectal surgery that may require a re-operation. Potentially pathogenic bacteria like Pseudomonas (and Enterococcus) contribute to the pathogenesis of an anastomotic leak through their capacity to degrade collagen and to activate [...] Read more.
Aim: An anastomotic leak is an unpredictable postoperative complication during recovery from colorectal surgery that may require a re-operation. Potentially pathogenic bacteria like Pseudomonas (and Enterococcus) contribute to the pathogenesis of an anastomotic leak through their capacity to degrade collagen and to activate tissue matrix metalloprotease-9 in host intestinal tissues. The microbiome, therefore, is the key to preventing an anastomotic leak after colorectal surgery. The aim of this trial was to investigate whether perioperative selective decontamination with a new mixture of locally acting antibiotics specially designed against Pseudomonas aeruginosa and Enterococcus faecalis can reduce or even stop early symptomatic leakage. Method: All hospitalized patients in our University Clinic undergoing colorectal surgery with a left-sided anastomosis were included as two groups; patients in the intervention group received polymyxin B, gentamicin and vancomycin every six hours for five postoperative days and those in the control group did not receive such an intervention. An anastomotic leak was defined as a clinically obvious defect of the intestinal wall integrity at the colorectal anastomosis site (including suture) that leads to a communication between the intra- and extraluminal compartments, requiring a re-do surgery within seven postoperative days. Results: Between February 2017 and May 2023, a total of 301 patients (median age of 63 years) were analyzed. An anastomotic leak was observed in 11 patients in the control group (n = 152), but in no patients in the intervention group (n = 149); this difference was highly significant. Conclusion: The antibiotic mixture (with polymyxin B, gentamicin and vancomycin) used for local decontamination in our study stopped the occurrence of anastomotic leaks completely. According to the definition of anastomotic leak, no further surgery was required after local perioperative decontamination. Full article
19 pages, 5103 KiB  
Article
Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides
Antibiotics 2024, 13(1), 78; https://doi.org/10.3390/antibiotics13010078 - 14 Jan 2024
Viewed by 383
Abstract
Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed [...] Read more.
Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed four peptides derived from the primary structure of Chenopodin. Two peptides reproduce natural fragments of 14 amino acids from Chenopodin, named Chen1 and Chen2, and two engineered peptides of the same length were designed based on the Chen1 sequence. The two amino acids of Chen1 containing amide side chains were replaced by arginine (ChenR) or tryptophan (ChenW) to generate engineered cationic and hydrophobic peptides. The evaluation of these 14-mer peptides on Staphylococcus aureus and Escherichia coli showed that Chen1 does not have antibacterial activity up to 512 µM against these strains, while other peptides exhibited antibacterial effects at lower concentrations. The chemical substitutions of glutamine and asparagine by amino acids with cationic or aromatic side chains significantly favoured their antibacterial effects. These peptides did not show significant hemolytic activity. The fluorescence microscopy analysis highlighted the membranolytic nature of Chenopodin-derived peptides. Using molecular dynamic simulations, we found that a pore is formed when multiple peptides are assembled in the membrane. Whereas, some of them form secondary structures when interacting with the membrane, allowing water translocations during the simulations. Finally, Chen2 and ChenR significantly reduced SARS-CoV-2 infection. These findings demonstrate that Chenopodin is a highly useful template for the design, engineering, and manufacturing of non-toxic, antibacterial, and antiviral peptides. Full article
(This article belongs to the Special Issue The Century-Long Journey of Peptide-Based Drugs)
Show Figures

Figure 1

55 pages, 1563 KiB  
Review
Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections
Antibiotics 2024, 13(1), 76; https://doi.org/10.3390/antibiotics13010076 - 13 Jan 2024
Viewed by 268
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to [...] Read more.
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen’s epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control. Full article
Show Figures

Figure 1

14 pages, 1480 KiB  
Review
Innovative Techniques for Infection Control and Surveillance in Hospital Settings and Long-Term Care Facilities: A Scoping Review
Antibiotics 2024, 13(1), 77; https://doi.org/10.3390/antibiotics13010077 - 13 Jan 2024
Viewed by 352
Abstract
Healthcare-associated infections (HAIs) pose significant challenges in healthcare systems, with preventable surveillance playing a crucial role. Traditional surveillance, although effective, is resource-intensive. The development of new technologies, such as artificial intelligence (AI), can support traditional surveillance in analysing an increasing amount of health [...] Read more.
Healthcare-associated infections (HAIs) pose significant challenges in healthcare systems, with preventable surveillance playing a crucial role. Traditional surveillance, although effective, is resource-intensive. The development of new technologies, such as artificial intelligence (AI), can support traditional surveillance in analysing an increasing amount of health data or meeting patient needs. We conducted a scoping review, following the PRISMA-ScR guideline, searching for studies of new digital technologies applied to the surveillance, control, and prevention of HAIs in hospitals and LTCFs published from 2018 to 4 November 2023. The literature search yielded 1292 articles. After title/abstract screening and full-text screening, 43 articles were included. The mean study duration was 43.7 months. Surgical site infections (SSIs) were the most-investigated HAI and machine learning was the most-applied technology. Three main themes emerged from the thematic analysis: patient empowerment, workload reduction and cost reduction, and improved sensitivity and personalization. Comparative analysis between new technologies and traditional methods showed different population types, with machine learning methods examining larger populations for AI algorithm training. While digital tools show promise in HAI surveillance, especially for SSIs, challenges persist in resource distribution and interdisciplinary integration in healthcare settings, highlighting the need for ongoing development and implementation strategies. Full article
(This article belongs to the Special Issue Antibacterial Resistance and Infection Control in ICU)
Show Figures

Figure 1

32 pages, 15808 KiB  
Review
Small Schiff Base Molecules—A Possible Strategy to Combat Biofilm-Related Infections
Antibiotics 2024, 13(1), 75; https://doi.org/10.3390/antibiotics13010075 - 12 Jan 2024
Viewed by 323
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only [...] Read more.
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects. Full article
(This article belongs to the Special Issue Organic Synthesis of Drug-Like Antimicrobial Compounds)
Show Figures

Figure 1

16 pages, 4671 KiB  
Article
Structures, Interactions and Activity of the N-Terminal Truncated Variants of Antimicrobial Peptide Thanatin
Antibiotics 2024, 13(1), 74; https://doi.org/10.3390/antibiotics13010074 - 12 Jan 2024
Viewed by 297
Abstract
Gram-negative bacteria are intrinsically more resistant to many frontline antibiotics, which is attributed to the permeability barrier of the outer membrane, drug efflux pumps and porins. Consequently, discovery of new small molecules antibiotics to kill drug-resistant Gram-negative bacteria presents a significant challenge. Thanatin, [...] Read more.
Gram-negative bacteria are intrinsically more resistant to many frontline antibiotics, which is attributed to the permeability barrier of the outer membrane, drug efflux pumps and porins. Consequently, discovery of new small molecules antibiotics to kill drug-resistant Gram-negative bacteria presents a significant challenge. Thanatin, a 21-residue insect-derived antimicrobial peptide, is known for its potent activity against Enterobacter Gram-negative bacteria, including drug-resistant strains. Here, we investigated a 15-residue N-terminal truncated analog PM15 (P1IIYCNRRTGKCQRM15) of thanatin to determine modes of action and antibacterial activity. PM15 and the P1 to Y and A substituted variants PM15Y and PM15A delineated interactions and permeabilization of the LPS–outer membrane. In antibacterial assays, PM15 and the analogs showed growth inhibition of strains of Gram-negative bacteria that is largely dependent on the composition of the culture media. Atomic-resolution structures of PM15 and PM15Y in free solution and in complex with LPS micelle exhibited persistent β-hairpin structures similar to native thanatin. However, in complex with LPS, the structures of peptides are more compact, with extensive packing interactions among residues across the two anti-parallel strands of the β-hairpin. The docked complex of PM15/LPS revealed a parallel orientation of the peptide that may be sustained by potential ionic and van der Waals interactions with the lipid A moiety of LPS. Further, PM15 and PM15Y bind to LptAm, a monomeric functional variant of LptA, the periplasmic component of the seven-protein (A-G) complex involved in LPS transport. Taken together, the structures, target interactions and antibacterial effect of PM15 presented in the current study could be useful in designing thanatin-based peptide analogs. Full article
Show Figures

Figure 1

14 pages, 1068 KiB  
Article
Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome
Antibiotics 2024, 13(1), 73; https://doi.org/10.3390/antibiotics13010073 - 12 Jan 2024
Viewed by 297
Abstract
The increasing prevalence of antimicrobial resistance and the limited availability of new antimicrobial agents have created an urgent need for new approaches to combat these issues. One such approach involves reevaluating the use of old antibiotics to ensure their appropriate usage and maximize [...] Read more.
The increasing prevalence of antimicrobial resistance and the limited availability of new antimicrobial agents have created an urgent need for new approaches to combat these issues. One such approach involves reevaluating the use of old antibiotics to ensure their appropriate usage and maximize their effectiveness, as older antibiotics could help alleviate the burden on newer agents. An example of such an antibiotic is chloramphenicol (CHL), which is rarely used due to its hematological toxicity. In the current study, we employed a previously published transposon mutant library in MG1655/pTF2::blaCTX-M-1, containing over 315,000 unique transposon insertions, to identify the genetic factors that play an important role during growth in the presence of CHL. The list of conditionally essential genes, collectively referred to as the secondary resistome (SR), included 67 genes. To validate our findings, we conducted gene knockout experiments on six genes: arcA, hfq, acrZ, cls, mdfA, and nlpI. Deleting these genes resulted in increased susceptibility to CHL as demonstrated by MIC estimations and growth experiments, suggesting that targeting the products encoded from these genes may reduce the dose of CHL needed for treatment and hence reduce the toxicity associated with CHL treatment. Thus, the gene products are indicated as targets for antibiotic adjuvants to favor the use of CHL in modern medicine. Full article
Show Figures

Figure 1

24 pages, 2506 KiB  
Review
Translational PK/PD for the Development of Novel Antibiotics—A Drug Developer’s Perspective
Antibiotics 2024, 13(1), 72; https://doi.org/10.3390/antibiotics13010072 - 11 Jan 2024
Viewed by 286
Abstract
Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean [...] Read more.
Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean clinical efficacy dataset is complemented by nonclinical data as supportive evidence of efficacy. In this context, translational Pharmacokinetic/Pharmacodynamic (PK/PD) plays a key role and is a major contributor to a “robust” nonclinical package. The classical PK/PD index approach, proven successful for established classes of antibiotics, is at the core of recent antibiotic approvals and the current antibacterial PK/PD guidelines by regulators. Nevertheless, in the case of novel antibiotics with a novel Mechanism of Action (MoA), there is no prior experience with the PK/PD index approach as the basis for translating nonclinical efficacy to clinical outcome, and additional nonclinical studies and PK/PD analyses might be considered to increase confidence. In this review, we discuss the value and limitations of the classical PK/PD approach and present potential risk mitigation activities, including the introduction of a semi-mechanism-based PK/PD modeling approach. We propose a general nonclinical PK/PD package from which drug developers might choose the studies most relevant for each individual candidate in order to build up a “robust” nonclinical PK/PD understanding. Full article
Show Figures

Figure 1

33 pages, 2730 KiB  
Review
New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis
Antibiotics 2024, 13(1), 71; https://doi.org/10.3390/antibiotics13010071 - 11 Jan 2024
Viewed by 494
Abstract
People with cystic fibrosis (CF) suffer from recurrent bacterial infections which induce inflammation, lung tissue damage and failure of the respiratory system. Prolonged exposure to combinatorial antibiotic therapies triggers the appearance of multi-drug resistant (MDR) bacteria. The development of alternative antimicrobial strategies may [...] Read more.
People with cystic fibrosis (CF) suffer from recurrent bacterial infections which induce inflammation, lung tissue damage and failure of the respiratory system. Prolonged exposure to combinatorial antibiotic therapies triggers the appearance of multi-drug resistant (MDR) bacteria. The development of alternative antimicrobial strategies may provide a way to mitigate antimicrobial resistance. Here we discuss different alternative approaches to the use of classic antibiotics: anti-virulence and anti-biofilm compounds which exert a low selective pressure; phage therapies that represent an alternative strategy with a high therapeutic potential; new methods helping antibiotics activity such as adjuvants; and antimicrobial peptides and nanoparticle formulations. Their mechanisms and in vitro and in vivo efficacy are described, in order to figure out a complete landscape of new alternative approaches to fight MDR Gram-negative CF pathogens. Full article
Show Figures

Figure 1

12 pages, 950 KiB  
Article
Outpatient Antibiotic Prescribing Patterns in Children among Primary Healthcare Institutions in China: A Nationwide Retrospective Study, 2017–2019
Antibiotics 2024, 13(1), 70; https://doi.org/10.3390/antibiotics13010070 - 10 Jan 2024
Viewed by 391
Abstract
There is scarce evidence to demonstrate the pattern of antibiotic use in children in China. We aimed to describe antibiotic prescribing practices among children in primary healthcare institutions (PHIs) in China. We described outpatient antibiotic prescriptions for children in PHIs from January 2017 [...] Read more.
There is scarce evidence to demonstrate the pattern of antibiotic use in children in China. We aimed to describe antibiotic prescribing practices among children in primary healthcare institutions (PHIs) in China. We described outpatient antibiotic prescriptions for children in PHIs from January 2017 to December 2019 at both the national and diagnostic levels, utilizing the antibiotic prescribing rate (APR), multi-antibiotic prescribing rate (MAPR), and broad-spectrum prescribing rate (BAPR). Generalized estimating equations were adopted to analyze the factors associated with antibiotic use. Among the total 155,262.2 weighted prescriptions for children, the APR, MAPR, and BAPR were 43.5%, 9.9%, and 84.8%. At the national level, J01DC second-generation cephalosporins were the most prescribed antibiotic category (21.0%, N = 15,313.0), followed by J01DD third-generation cephalosporins (17.4%, N = 12,695.8). Watch group antibiotics accounted for 55.0% of the total antibiotic prescriptions (N = 52,056.3). At the diagnostic level, respiratory tract infections accounted for 67.4% of antibiotic prescriptions, among which prescriptions with diagnoses classified as potentially bacterial RTIs occupied the highest APR (55.0%). For each diagnostic category, the MAPR and BAPR varied. Age, region, and diagnostic categories were associated with antibiotic use. Concerns were raised regarding the appropriateness of antibiotic use, especially for broad-spectrum antibiotics. Full article
(This article belongs to the Special Issue Antimicrobial Stewardship and Prescribing Practice)
Show Figures

Figure 1

11 pages, 3675 KiB  
Systematic Review
Antibiotic-Coated Intramedullary Nailing Managing Long Bone Infected Non-Unions: A Meta-Analysis of Comparative Studies
Antibiotics 2024, 13(1), 69; https://doi.org/10.3390/antibiotics13010069 - 10 Jan 2024
Viewed by 329
Abstract
Long bone infected non-unions are such an orthopedic challenge that antibiotic-coated intramedullary nailing (ACIN) has become a viable therapeutic option for their management. This study aims to provide a comprehensive assessment of the available data about the use of antibiotic-coated nailing in the [...] Read more.
Long bone infected non-unions are such an orthopedic challenge that antibiotic-coated intramedullary nailing (ACIN) has become a viable therapeutic option for their management. This study aims to provide a comprehensive assessment of the available data about the use of antibiotic-coated nailing in the treatment of long bone infected non-unions. Following the PRISMA guideline in this meta-analysis, a systematic literature search was conducted across major databases for studies evaluating ACIN in long bone infected non-unions. The primary outcome measures included union rates, infection control, complications and functional status. Five eligible studies encompassing 183 patients in total met the inclusion criteria. The meta-analysis revealed no difference in the union rate in the antibiotic-coated intramedullary nailing group compared to that of the control group (OR = 1.73 [0.75–4.02]). Antibiotic-coated intramedullary nailing demonstrated no association with higher infection eradication (OR = 2.10 [0.97–4.54]). Also, functional outcome measure was mostly not significantly different between ACIN and control interventions. According to this meta-analysis, compared to the management of controls, ACIN is neither linked to increased union rates nor decreased infection rates. The paucity of research on this topic emphasizes the continuous need for additional well-designed randomized controlled trials for the application of antibiotics-coated intramedullary nailing in long bone non-unions. Full article
(This article belongs to the Special Issue Advances in Orthopedic Infection Management and Antibiotic Treatment)
Show Figures

Figure 1

Back to TopTop