Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Journal = Air

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4511 KiB  
Article
Background Influence of PM2.5 in Dallas–Fort Worth Area and Recommendations for Source Apportionment
Air 2023, 1(4), 258-278; https://doi.org/10.3390/air1040019 - 05 Dec 2023
Viewed by 680
Abstract
Source apportionment of observed PM2.5 concentrations is of growing interest as communities seek ways to improve their air quality. We evaluated publicly available PM2.5 data from the USEPA in the Dallas–Fort Worth metropolitan area to determine the contributions from various PM [...] Read more.
Source apportionment of observed PM2.5 concentrations is of growing interest as communities seek ways to improve their air quality. We evaluated publicly available PM2.5 data from the USEPA in the Dallas–Fort Worth metropolitan area to determine the contributions from various PM2.5 sources to the total PM2.5 observed. The approach combines interpolation and fixed effect regression models to disentangle background from local PM2.5 contributions. These models found that January had the lowest total PM2.5 mean concentrations, ranging from 5.0 µg/m3 to 6.4 µg/m3, depending on monitoring location. July had the highest total PM2.5 mean concentrations, ranging from 8.7 µg/m3 to 11.1 µg/m3, depending on the location. January also had the lowest mean local PM2.5 concentrations, ranging from 2.6 µg/m3 to 3.6 µg/m3, depending on the location. Despite having the lowest local PM2.5 concentrations, January had the highest local attributions [51–57%]. July had the highest mean local PM2.5 concentrations, ranging from 2.9 µg/m3 to 4.1 µg/m3, depending on the location. Despite having the highest local PM2.5 concentrations, July had the lowest local attributions [33–37%]. These results suggest that local contributions have a limited effect on total PM2.5 concentrations and that the observed seasonal changes are likely the result of background influence, as opposed to modest changes in local contributions. Overall, the results demonstrate that in the Dallas–Fort Worth metropolitan area, approximately half of the observed total PM2.5 is from background PM2.5 sources and half is from local PM2.5 sources. Among the local PM2.5 source contributions in the Dallas–Fort Worth metropolitan area, our analysis shows that the vast majority is from non-point sources, such as from the transportation sector. While local point sources may have some incremental site-specific local contribution, such contributions are not clearly distinguishable in the data evaluated. We present this approach as a roadmap for disentangling PM2.5 concentrations at different spatial levels (i.e., the local, regional, or state level) and from various sectors (i.e., residential, industrial, transport, etc.). This roadmap can help decision-makers to optimize mitigatory, regulatory, and/or community efforts towards reducing total community PM2.5 exposure. Full article
Show Figures

Figure 1

21 pages, 3137 KiB  
Review
Contribution of Road Transport to Pakistan’s Air Pollution in the Urban Environment
Air 2023, 1(4), 237-257; https://doi.org/10.3390/air1040018 - 02 Nov 2023
Viewed by 1751
Abstract
The urban areas of Pakistan exhibit some of the world’s highest levels of air pollution, primarily due to sub-2.5 μm particulate emissions. This issue significantly impairs both the country’s economy and the quality of life of its residents. Road transport is a significant [...] Read more.
The urban areas of Pakistan exhibit some of the world’s highest levels of air pollution, primarily due to sub-2.5 μm particulate emissions. This issue significantly impairs both the country’s economy and the quality of life of its residents. Road transport is a significant contributor to anthropogenic air pollution but there are discrepancies about the extent of its share. Source apportionment and sectoral inventory studies attribute anywhere between 5 and >80% of the total air pollution to vehicular sources. This uncertainty propagates into the transport policy interventions that are informed by such studies and can thus hinder the achievement of desired pollution mitigation targets. In an effort to reconcile such discrepancies and guide future studies and policy-making efforts, this paper critically reviews source apportionment studies conducted in the urban centres of Pakistan over the past two decades. The strengths and weaknesses of different approaches are compared, and results from the studies are discussed based on the emissions profile of Pakistan’s automotive fleet that emerges. Inconsistencies in the reporting of pollutant concentrations and interpreting their impacts without accounting for the relative disease burden of different pollutant species are found to be the major reasons for the large variations in the reported sectoral shares. At the end, a framework for regular air pollution monitoring and source tracking is proposed in which high-fidelity receptor-based studies inform lower-fidelity but economical sectoral inventory assessments. Full article
Show Figures

Figure 1

15 pages, 2465 KiB  
Article
Nontrivial Impact of Relative Humidity on Organic New Particle Formation from Ozonolysis of cis-3-Hexenyl Acetate
Air 2023, 1(4), 222-236; https://doi.org/10.3390/air1040017 - 17 Oct 2023
Viewed by 576
Abstract
The impact of relative humidity (RH) on organic new particle formation (NPF) from the ozonolysis of biogenic volatile organic compounds (BVOCs) remains an area of active debate. Previous reports provide contradictory results, indicating both the depression and enhancement of NPF under conditions of [...] Read more.
The impact of relative humidity (RH) on organic new particle formation (NPF) from the ozonolysis of biogenic volatile organic compounds (BVOCs) remains an area of active debate. Previous reports provide contradictory results, indicating both the depression and enhancement of NPF under conditions of high RH. Herein, we report on the impact of RH on NPF from the dark ozonolysis of cis-3-hexenyl acetate (CHA), a green-leaf volatile (GLV) emitted by vegetation. We show that RH inhibits NPF by this BVOC, essentially shutting it down at RH levels > 1%. While the mechanism for the inhibition of NPF remains unclear, we demonstrate that it is likely not due to increased losses of CHA to the humid chamber walls. New oxidation products dominant under humid conditions are proposed that, based on estimated vapor pressures (VPs), should enhance NPF; however, it is possible that the vapor phase concentration of these low-volatility products is not sufficient to initiate NPF. Furthermore, the reaction of C3-excited state Criegee intermediates (CIs) with water may lead to the formation of small carboxylic acids that do not contribute to NPF. This hypothesis is supported by experiments with quaternary O3 + CHA + α-pinene + RH systems, which showed decreases in total α-pinene-derived NPF at ~0% RH and subsequent recovery at elevated RH. Full article
Show Figures

Figure 1

15 pages, 1655 KiB  
Article
Ammonia Cycling and Emerging Inorganic Secondary Aerosols from Arable Agriculture
Air 2023, 1(3), 207-221; https://doi.org/10.3390/air1030016 - 19 Sep 2023
Viewed by 857
Abstract
Air quality monitoring in Ireland is under the jurisdiction of the Environmental Protection Agency in compliance with the Gothenburg Protocol, EU/national legislation, and the National Clean Air Strategy. Secondary inorganic aerosols (SIAS) have been acknowledged as a key atmospheric pollutant, with serious public [...] Read more.
Air quality monitoring in Ireland is under the jurisdiction of the Environmental Protection Agency in compliance with the Gothenburg Protocol, EU/national legislation, and the National Clean Air Strategy. Secondary inorganic aerosols (SIAS) have been acknowledged as a key atmospheric pollutant, with serious public health impacts and no safe exposure threshold in place to date. Ammonia (NH3) emissions are linked to the secondary production of aerosols through atmospheric reactions occurring with acidic atmospheric components such as sulfuric, nitric, and hydrochloric acid. These reactions result in the formation of ammonium sulfate, ammonium nitrate and ammonium chloride, among others. Approximately 98% of NH3 emissions occurring in Ireland arise from agriculture, with minor contributions from transport and natural sources. A better understanding of NH3 emissions and SIA formation can be achieved through monitoring emissions at the source level. Additionally, mitigation strategies with a more thorough understanding of NH3 dynamics at the source level and consequential SIA formation allow for more efficient action. This project monitored ambient NH3 and SIA on two selected arable agricultural sites and a control site in a rural site close to Dublin on the east coast of Ireland to establish emission levels. Meteorological factors affecting emissions and SIA formation were also measured and cross-correlated to determine micro-meteorological effects. Monitoring at the agricultural sites observed ambient NH3 concentrations ranging from 0.52 µg m−3 to 1.70 µg m−3, with an average of 1.45 µg m−3. At the control site, ambient NH3 measured concentrations ranged from 0.05 µg m−3 to 1.76 µg m−3 with an average of 0.516 µg m−3. Aerosol NH4+ ranged from 0.03 µg m−3 to 1.05 µg m−3 with an average concentration of 0.27 µg m−3 at the agricultural site. The potential effects of meteorological conditions and the implications for the effects of these emissions are discussed, with recommendations to aid compliance with the National Emissions Ceiling and the National Clean Air Strategy (Directive 2001/81/EC). Full article
Show Figures

Figure 1

11 pages, 1320 KiB  
Article
Using Low-Cost Sensing Technology to Assess Ambient and Indoor Fine Particulate Matter Concentrations in New York during the COVID-19 Lockdown
Air 2023, 1(3), 196-206; https://doi.org/10.3390/air1030015 - 16 Aug 2023
Viewed by 935
Abstract
Air pollution is a leading cause of death in the United States and is associated with adverse health outcomes, including increased vulnerability to coronavirus disease 2019 (COVID-19). The AirBeam2 was used to measure particulate matter with a diameter of 2.5 μm or smaller [...] Read more.
Air pollution is a leading cause of death in the United States and is associated with adverse health outcomes, including increased vulnerability to coronavirus disease 2019 (COVID-19). The AirBeam2 was used to measure particulate matter with a diameter of 2.5 μm or smaller (PM2.5) to investigate differences between indoor and ambient levels at seven private homes in New York during and after the COVID-19 lockdown. Measurements taken in 2020 fall, 2021 winter, and 2022 fall showed that at 90% of the sites, indoor PM2.5 levels exceeded outdoor levels both during and after the COVID-19 lockdown, p = 0.03, possibly exceeding safety levels. Higher indoor PM2.5 levels attributed to little or no ventilation in the basement and kitchens from cooking and smoke were greater in fall than in winter. Higher ambient PM2.5 levels were attributed to vehicular traffic at a street-facing sampling site. PM2.5 sources identified in this study may help in devising control strategies to improve indoor air quality (IAQ) and consequently alleviate respiratory health effects. These findings may be used as a basis for in-house modifications, including natural ventilation and the use of air purifiers to reduce exposures, mitigate future risks, and prevent potential harm to vulnerable residents. Full article
Show Figures

Figure 1

12 pages, 5215 KiB  
Article
Experimental Study of the TVOC Distribution in a Car Cabin
Air 2023, 1(3), 184-195; https://doi.org/10.3390/air1030014 - 09 Aug 2023
Viewed by 991
Abstract
The vehicle in-cabin is subject to several types of pollutants infiltrating from the outdoors or emitted directly inside it, such as Volatile Organic Compounds (VOCs). The concentration of TVOC (total volatile organic compounds) is the result of the emission from different equipment surfaces [...] Read more.
The vehicle in-cabin is subject to several types of pollutants infiltrating from the outdoors or emitted directly inside it, such as Volatile Organic Compounds (VOCs). The concentration of TVOC (total volatile organic compounds) is the result of the emission from different equipment surfaces that compose the car cabin. In the present study, the experimental characterization of TVOC emission from the interior surfaces of a car cabin is discussed by considering the influence of two parameters: the temperature and ventilation modes. A measurement location grid was used to measure TVOC’s emissions from 267 points on all surfaces of the car’s interior equipment. Three different temperatures and two ventilation modes (recirculation and outdoor air) were investigated. The results indicate that the concentration of TVOC increases with the temperature inside the cabin with a contribution that varies with the type of cabin equipment including the dashboard, center console, seats, and carpets. On the other hand, the concentration distributions of TVOC showed relative differences of 10–13% and 2–5% for surface and volumetric measurements, respectively. This implies no preferential positioning of the in-cabin probe for TVOC volumetric concentration measurements. In addition, the recirculation ventilation mode results in a higher accumulation of TVOC; therefore, higher concentrations are measured. Full article
(This article belongs to the Special Issue Indoor Air Quality: Risk Assessment and Public Health)
Show Figures

Figure 1

9 pages, 851 KiB  
Communication
A Comparison of Ambient Air Ethylene Oxide Modeling Estimates from Facility Stack and Fugitive Emissions to Canister-Based Ambient Air Measurements in Salt Lake City
Air 2023, 1(3), 175-183; https://doi.org/10.3390/air1030013 - 06 Jul 2023
Viewed by 1072
Abstract
Ethylene oxide (EtO) is a colorless, flammable gas at room temperature produced by the catalytic oxidation of ethylene. EtO is widely used by medical sterilization facilities to clean medical supplies and equipment. Recent epidemiological studies showed that EtO is a more potent carcinogen [...] Read more.
Ethylene oxide (EtO) is a colorless, flammable gas at room temperature produced by the catalytic oxidation of ethylene. EtO is widely used by medical sterilization facilities to clean medical supplies and equipment. Recent epidemiological studies showed that EtO is a more potent carcinogen than previously documented, leading the Environmental Protection Agency (EPA) to update, in December 2016, the inhalation unit risk estimate for EtO. This resulted in the identification of EtO as a potential health concern in several areas across the US, including the state of Utah. The geography surrounding Salt Lake Valley creates a bowl, which is ideal for collecting air pollution emissions. The region often experiences inversion episodes which inhibit vertical mixing and cause an accumulation of air pollutants, leading to unhealthy pollution levels. Using the EPA’s dispersion modeling software, AERMOD, this study estimated EtO concentrations through facility stack and fugitive emissions modeling results. These values were compared with those of canister-based concentrations from ambient air samples taken near a medical device sterilization facility in Salt Lake Valley. Stainless steel whole-air passivated canisters were used to collect 24 h ambient concentration samples of EtO. Eight locations surrounding a Salt Lake Valley medical device sterilization facility and four background sites were chosen to measure the ambient concentrations. Accounting for potential atmospheric impacts on EtO, measurements were sampled in winter 2022 (January–March) and summer 2022 (July–September). The modeled EtO concentrations were adjusted to account for background values associated with the winter or summer data. Then, the two methodologies were compared using a Wilcoxon signed-ranked paired test. The statistical analysis resulted in six of the eight sample locations surrounding the sterilization facility being significantly different when comparing the canister-based measurements of ambient EtO to modeled estimates. Canister-based measurements taken at sites one, three, and four were statistically greater than the modeled estimates, while sites two, five, and seven were statistically less than the modeled estimates. Also, the summer background value calculated was almost 2.5 times greater than the winter one. The results do not suggest whether one method is more or less conservative than the other. In conclusion, the five of the closest sites and site seven were statistically different when comparing measured and modeled ambient concentrations of EtO. The comparison results do not clearly indicate if a correction factor could be derived for future human exposure to cancer risk assessment modeling. However, it is reasonable that the closer to the sterilization facility, the more total EtO exposure will be realized. Full article
Show Figures

Figure 1

16 pages, 2746 KiB  
Article
Reduction of Typical Diesel NOx Emissions by SCR-NH3 Using Metal-Exchanged Natural Zeolite and SBA-15 Catalysts
Air 2023, 1(3), 159-174; https://doi.org/10.3390/air1030012 - 30 Jun 2023
Viewed by 983
Abstract
In this work, the catalytic performance of clinoptilolite (CLIN) and SBA-15 catalysts, doped with Fe and Cu, was evaluated in the selective catalytic reduction of NO using NH3 as a reducing agent (SCR-NH3). Both Cu-CLIN and Fe-CLIN were obtained by [...] Read more.
In this work, the catalytic performance of clinoptilolite (CLIN) and SBA-15 catalysts, doped with Fe and Cu, was evaluated in the selective catalytic reduction of NO using NH3 as a reducing agent (SCR-NH3). Both Cu-CLIN and Fe-CLIN were obtained by ion-exchange using natural clinoptilolite zeolite originating from the Hrabovec deposit (northeast Slovakia region). Cu-SBA-15 and Fe-SBA-15 were prepared by impregnation into SBA-15 mesoporous synthesized silica. Standard catalytic activity tests were carried out on a bench-scale laboratory apparatus using a reaction mixture of a standard test. GHSV of 48,000 h−1 was adopted based on the space velocity of a real NH3-SCR catalyst for diesel vehicles (100–550 °C). All Cu-doped samples showed better NO conversion values than Fe-doped samples. Clinoptilolite catalysts were more active than those based on SBA-15. Maximum NO conversions of about 96% were observed for Cu-CLIN and Fe-CLIN at 350–400 °C, respectively. Moreover, Fe-CLIN also showed higher stability in the presence of SO2 and water steam at 350 °C. These results demonstrate the potential of metal-doped natural clinoptilolite to be used as cost-effective catalysts applied to the abatement of NOx emissions generated in automotive combustion processes. Full article
Show Figures

Figure 1

20 pages, 3029 KiB  
Article
A Case Study of Air Quality and a Health Index over a Port, an Urban and a High-Traffic Location in Rhodes City
Air 2023, 1(2), 139-158; https://doi.org/10.3390/air1020011 - 12 Jun 2023
Viewed by 1958
Abstract
One of people’s greatest concerns about air quality degradation is its impact on human health. This work is a case study that aims to investigate the air quality and the related impact on people’s health in a coastal city over the eastern Mediterranean. [...] Read more.
One of people’s greatest concerns about air quality degradation is its impact on human health. This work is a case study that aims to investigate the air quality and the related impact on people’s health in a coastal city over the eastern Mediterranean. The analysis proceeded during a low-tourist density period, covering the days from 17 to 27 November 2022. Hourly PM2.5, NO2 and O3 concentration records from three, mobile, Air Quality Monitoring Systems (AQMS), established in an urban location, port and central area of Rhodes city, are analyzed. To investigate the impact of pollution levels on human health, the Air Quality Health Index (AQHI) is calculated. The daily and diurnal variation of pollutants’ concentration and AQHI among the different areas, as well as the relation among the ambient air pollutants and AQHI, are studied. Additionally, to investigate the impact of wind regime on the variation of pollution and AQHI levels, the hourly zonal and meridional wind-speed components, as well as the temperature at 2 m, the dew point temperature at 2 m, and the height of the boundary layer from ERA5 reanalysis, are retrieved for the region of the southeastern Mediterranean. Results show that the highest pollution level occurs in the city center of Rhodes, compared to the rest of the studied locations. In general, the findings do not show exceedances of the pollutants’ concentration according to the European Directive 2008/50/EC. Moreover, findings show that in some cases, the health risk is classified from Low to Moderate in terms of AQHI. The analysis indicates that the climate conditions affect the pollutants’ concentration due to dispersion, and likely, the atmospheric transport of pollutants. Finally, this work aims to improve the knowledge regarding the air quality of southeastern Greece, promoting the framework for the green and sustainable development of the South Aegean Sea. Full article
Show Figures

Figure 1

14 pages, 5880 KiB  
Article
Changes in Air Quality, Meteorology and Energy Consumption during the COVID-19 Lockdown and Unlock Periods in India
Air 2023, 1(2), 125-138; https://doi.org/10.3390/air1020010 - 04 May 2023
Viewed by 2127
Abstract
The increasing population and its associated amenities demand innovative devices, infrastructure, methods, plans and policies. Regional climate has a great role in deciding the air quality and energy demand, and therefore, weather and climate have an indisputable role in its consumption and storage. [...] Read more.
The increasing population and its associated amenities demand innovative devices, infrastructure, methods, plans and policies. Regional climate has a great role in deciding the air quality and energy demand, and therefore, weather and climate have an indisputable role in its consumption and storage. Here, we present the changes in trace gases and associated regional weather in India during lockdown and unlock periods of COVID-19. We observe a reduction of about 30% in sulphur dioxide (SO2) and 10–20% in aerosols in the Indo-Gangetic Plain (IGP), large cities, industrial sites, mining areas and thermal power plants during lockdown as compared to the same period in the previous year and with respect to its climatology. However, a considerable increase in aerosols is found, particularly over IGP during Unlock 1.0 (1–30 June 2020), because of the relaxation of lockdown restrictions. The analyses also show a decrease in temperature by 1–3 °C during lockdown compared to its climatology for the same period, mainly in IGP and Central India, possibly due to the significant reduction in absorbing aerosols such as black carbon and decrease in humidity during the period. The west coast, northwest and central India show reduced wind speed when compared to its previous year and climatological values, suggesting that there was a change in regional weather due to the lockdown. Energy demand in India decreased by about 25–30% during the first phase of lockdown and about 20% during the complete lockdown period. This study thus suggests that the reduction of pollution could also modify local weather, and these results would be useful for drafting policy decisions on air pollution reduction, urban development, the energy sector, agriculture and water resources. Full article
Show Figures

Figure 1

21 pages, 10379 KiB  
Article
Influence of Moisture in Museum Rooms on the State of Microbial Contamination of the Air and Decoration Surfaces: The Example of a 17th Century Monument in the Museum of King John III’s Palace at Wilanow (Warsaw, Poland)
Air 2023, 1(2), 104-124; https://doi.org/10.3390/air1020009 - 24 Apr 2023
Viewed by 1365
Abstract
This article is a case study of museum premises at the Museum of King John III’s Palace at Wilanow (Warsaw, Poland), wetted as a result of a failure of the water supply system to the air conditioning unit located in the attic of [...] Read more.
This article is a case study of museum premises at the Museum of King John III’s Palace at Wilanow (Warsaw, Poland), wetted as a result of a failure of the water supply system to the air conditioning unit located in the attic of the building. As a result of flooding, discoloration and cracks appeared on the plaster and stucco decoration of the ceiling, located mainly in the central part of the ceiling of the King’s Library. The paintings (plafonds) mounted on the ceiling of this room also became damp. The article analyzes the microbiological contamination of air and damp paintings in the context of promptly proceeding with the drying of damp building partitions. The obtained results of microbiological air pollution in the flooded rooms were significantly lower than the permissible values recommended by Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment. In the King’s Library, i.e., the room with the dampest plaster and stucco as a result of the accident, the concentration of mold spores in the air was only 15 cfu/m3. This means that the immediate commencement of intensive drying of the building partitions (walls, ceilings with wooden floors) brought very good results. The rapid reduction in the moisture of the building partitions contributed to the worsening conditions for the development of microorganisms, which can have an adverse effect on wooden building partitions, plaster, stucco, etc. Full article
Show Figures

Figure 1

10 pages, 827 KiB  
Communication
Air Pollution in South Texas: A Short Communication of Health Risks and Implications
Air 2023, 1(2), 94-103; https://doi.org/10.3390/air1020008 - 30 Mar 2023
Cited by 1 | Viewed by 2335
Abstract
Air pollution is a major public health concern. The region of South Texas in the United States has experienced high levels of air pollution in recent years due to an increase in population, cross-border trade between the U.S.A. and Mexico, and high vehicular [...] Read more.
Air pollution is a major public health concern. The region of South Texas in the United States has experienced high levels of air pollution in recent years due to an increase in population, cross-border trade between the U.S.A. and Mexico, and high vehicular activity. This review assesses the relationships between human health and air pollution in South Texas. A thorough scientific search was performed using PubMed, Science Direct, and ProQuest, with most of the literature focusing on the source apportionment of particulate matter that is 2.5 microns or less in width (PM2.5), Carbon Dioxide (CO2), carbon monoxide (CO), Black Carbon (BC), and associated health risks for children and pregnant women. Findings from the source apportionment studies suggest the role of industries, automobiles emissions, agricultural burning, construction work, and unpaved roads in the overall deterioration of air quality and deleterious health effects, such as respiratory and cardiovascular diseases. This review demonstrates the pressing need for more air pollution and health effects studies in this region, especially the Brownsville–Harlingen–McAllen metropolitan area. Full article
Show Figures

Figure 1

5 pages, 1685 KiB  
Editorial
Air—A New Open Access Journal
Air 2023, 1(1), 89-93; https://doi.org/10.3390/air1010007 - 09 Mar 2023
Viewed by 1687
Abstract
Air (ISSN 2813-4168) is a new peer-reviewed, international, open access online academic journal for scientists in different disciplines related to air’s composition and impacts [...] Full article
Show Figures

Figure 1

9 pages, 244 KiB  
Review
The Greenhouse Gas Crisis and the Logistic Growth Curve
Air 2023, 1(1), 80-88; https://doi.org/10.3390/air1010006 - 02 Mar 2023
Viewed by 1416
Abstract
The greatest challenge of the coming century will be the consequences of an imbalanced atmosphere. Currently, projections of global heating due to an increasingly imbalanced atmosphere are dire, but they underestimate the near-term heating impacts of the growing concentrations of methane. Industrially mediated [...] Read more.
The greatest challenge of the coming century will be the consequences of an imbalanced atmosphere. Currently, projections of global heating due to an increasingly imbalanced atmosphere are dire, but they underestimate the near-term heating impacts of the growing concentrations of methane. Industrially mediated carbon capture and storage sometimes gets raised as a promising solution on the CO2 front, but it is presently commercially inviable. Despite these facts, we nonetheless need to act globally to reduce the atmospheric concentrations of greenhouse gases, although our increasingly separate information ecosystems make finding a way to express the reality of the atmospheric imbalance crisis to a wide audience daunting. One approach to presenting the atmospheric imbalances leading to global heating is to strip the discussion down initially to its bare bones with a sharp focus on the variables of the logistic growth equation. Although virtually anything can be politicized, the logistic growth equation’s variables are at least apolitical in their origin. After examining those variables, we can proceed to focus on density-dependent mortality factors (DDMFs) and their relationship to visible climatic changes driven by atmospheric imbalances. Both the Global North and the Global South need to do all that we do to reduce atmospheric greenhouse gas accumulation, reducing DDMFs, while paying careful attention to Indigenous rights and to the need for global gender equity, so that our efforts to control DDMFs do not produce a new expression of colonialism. Full article
11 pages, 4827 KiB  
Article
Scrubber Filter in the Phosphate Fertilizer Factory Reduces Fluorine Emission and Accumulation in Corn
Air 2023, 1(1), 69-79; https://doi.org/10.3390/air1010005 - 03 Feb 2023
Viewed by 1943
Abstract
Fluorine (F) produced from the fertilizer factory occurs in the process of phosphate fertilizer production, using sulfur and phosphate rocks as raw materials. Technologies to control atmospheric pollution with F should be adopted to reduce the impact on agricultural production. This study has [...] Read more.
Fluorine (F) produced from the fertilizer factory occurs in the process of phosphate fertilizer production, using sulfur and phosphate rocks as raw materials. Technologies to control atmospheric pollution with F should be adopted to reduce the impact on agricultural production. This study has the hypothesis that the emission of F, derived from the chimneys of fertilizer factories, is influencing the quality of corn (Zea mays L.) and increasing the F levels in the soil and plants. The objective of the study was to monitor the contents of F in corn leaves and soil in properties located close to the fertilizer production industry (between 1.5 and 2.0 km) before and after the installation of scrubber filters in the chimneys of the factory. A field study was carried out during the 2020/2021 harvest to evaluate the contents of F in corn plants and soil. Results showed that the scrubber filter installation represented a F reduction average of 92% in leaves comparing the average before the scrubber filter installation. Corn showed symptoms of F toxicity, such as leaf chlorosis, caused by the disintegration of chloroplasts, inhibition of photosynthesis, and others. In addition, there was a reduction of 40% (from the first to the second collecting) and 75% (from the first to the third collecting) in the levels of F in the soil after the scrubber filter installation. Based on the results, we conclude that the implementation of a scrubber filter is an optimal alternative to reduce F levels in corn leaves and the soil in properties located close to a fertilizer factory. Full article
Show Figures

Figure 1

Back to TopTop