Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,842)

Search Parameters:
Journal = Algorithms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7433 KiB  
Article
An Interactive Digital-Twin Model for Virtual Reality Environments to Train in the Use of a Sensorized Upper-Limb Prosthesis
Algorithms 2024, 17(1), 35; https://doi.org/10.3390/a17010035 - 14 Jan 2024
Viewed by 291
Abstract
In recent years, the boost in the development of hardware and software resources for building virtual reality environments has fuelled the development of tools to support training in different disciplines. The purpose of this work is to discuss a complete methodology and the [...] Read more.
In recent years, the boost in the development of hardware and software resources for building virtual reality environments has fuelled the development of tools to support training in different disciplines. The purpose of this work is to discuss a complete methodology and the supporting algorithms to develop a virtual reality environment to train the use of a sensorized upper-limb prosthesis targeted at amputees. The environment is based on the definition of a digital twin of a virtual prosthesis, able to communicate with the sensors worn by the user and reproduce its dynamic behaviour and the interaction with virtual objects. Several training tasks are developed according to standards, including the Southampton Hand Assessment Procedure, and the usability of the entire system is evaluated, too. Full article
(This article belongs to the Special Issue Algorithms for Virtual and Augmented Environments)
Show Figures

Figure 1

23 pages, 7475 KiB  
Article
Ensemble Heuristic–Metaheuristic Feature Fusion Learning for Heart Disease Diagnosis Using Tabular Data
Algorithms 2024, 17(1), 34; https://doi.org/10.3390/a17010034 - 14 Jan 2024
Viewed by 236
Abstract
Heart disease is a global health concern of paramount importance, causing a significant number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse outcomes and improving patient well-being, thereby creating a growing demand for intelligent approaches [...] Read more.
Heart disease is a global health concern of paramount importance, causing a significant number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse outcomes and improving patient well-being, thereby creating a growing demand for intelligent approaches to predict heart disease effectively. This paper introduces an ensemble heuristic–metaheuristic feature fusion learning (EHMFFL) algorithm for heart disease diagnosis using tabular data. Within the EHMFFL algorithm, a diverse ensemble learning model is crafted, featuring different feature subsets for each heterogeneous base learner, including support vector machine, K-nearest neighbors, logistic regression, random forest, naive bayes, decision tree, and XGBoost techniques. The primary objective is to identify the most pertinent features for each base learner, leveraging a combined heuristic–metaheuristic approach that integrates the heuristic knowledge of the Pearson correlation coefficient with the metaheuristic-driven grey wolf optimizer. The second objective is to aggregate the decision outcomes of the various base learners through ensemble learning. The performance of the EHMFFL algorithm is rigorously assessed using the Cleveland and Statlog datasets, yielding remarkable results with an accuracy of 91.8% and 88.9%, respectively, surpassing state-of-the-art techniques in heart disease diagnosis. These findings underscore the potential of the EHMFFL algorithm in enhancing diagnostic accuracy for heart disease and providing valuable support to clinicians in making more informed decisions regarding patient care. Full article
(This article belongs to the Special Issue 2022 and 2023 Selected Papers from Algorithms Editorial Board Members)
Show Figures

Figure 1

20 pages, 891 KiB  
Article
A Quantum-Inspired Predator–Prey Algorithm for Real-Parameter Optimization
Algorithms 2024, 17(1), 33; https://doi.org/10.3390/a17010033 - 12 Jan 2024
Viewed by 177
Abstract
Quantum computing has opened up various opportunities for the enhancement of computational power in the coming decades. We can design algorithms inspired by the principles of quantum computing, without implementing in quantum computing infrastructure. In this paper, we present the quantum predator–prey algorithm [...] Read more.
Quantum computing has opened up various opportunities for the enhancement of computational power in the coming decades. We can design algorithms inspired by the principles of quantum computing, without implementing in quantum computing infrastructure. In this paper, we present the quantum predator–prey algorithm (QPPA), which fuses the fundamentals of quantum computing and swarm optimization based on a predator–prey algorithm. Our results demonstrate the efficacy of QPPA in solving complex real-parameter optimization problems with better accuracy when compared to related algorithms in the literature. QPPA achieves highly rapid convergence for relatively low- and high-dimensional optimization problems and outperforms selected traditional and advanced algorithms. This motivates the application of QPPA to real-world application problems. Full article
(This article belongs to the Special Issue Recent Advances in Algorithms for Swarm Systems)
Show Figures

Figure 1

20 pages, 1159 KiB  
Article
Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition for Enhanced Imperceptibility and Robustness
Algorithms 2024, 17(1), 32; https://doi.org/10.3390/a17010032 - 12 Jan 2024
Viewed by 407
Abstract
Digital multimedia elements such as text, image, audio, and video can be easily manipulated because of the rapid rise of multimedia technology, making data protection a prime concern. Hence, copyright protection, content authentication, and integrity verification are today’s new challenging issues. To address [...] Read more.
Digital multimedia elements such as text, image, audio, and video can be easily manipulated because of the rapid rise of multimedia technology, making data protection a prime concern. Hence, copyright protection, content authentication, and integrity verification are today’s new challenging issues. To address these issues, digital image watermarking techniques have been proposed by several researchers. Image watermarking can be conducted through several transformations, such as discrete wavelet transform (DWT), singular value decomposition (SVD), orthogonal matrix Q and upper triangular matrix R (QR) decomposition, and non-subsampled contourlet transform (NSCT). However, a single transformation cannot simultaneously satisfy all the design requirements of image watermarking, which makes a platform to design a hybrid invisible image watermarking technique in this work. The proposed work combines four-level (4L) DWT and two-level (2L) SVD. The Arnold map initially encrypts the watermark image, and 2L SVD is applied to it to extract the s components of the watermark image. A 4L DWT is applied to the host image to extract the LL sub-band, and then 2L SVD is applied to extract s components that are embedded into the host image to generate the watermarked image. The dynamic-sized watermark maintains a balanced visual impact and non-blind watermarking preserves the quality and integrity of the host image. We have evaluated the performance after applying several intentional and unintentional attacks and found high imperceptibility and improved robustness with enhanced security to the system than existing state-of-the-art methods. Full article
Show Figures

Figure 1

18 pages, 492 KiB  
Article
GPU Algorithms for Structured Sparse Matrix Multiplication with Diagonal Storage Schemes
Algorithms 2024, 17(1), 31; https://doi.org/10.3390/a17010031 - 12 Jan 2024
Viewed by 213
Abstract
Matrix–matrix multiplication is of singular importance in linear algebra operations with a multitude of applications in scientific and engineering computing. Data structures for storing matrix elements are designed to minimize overhead information as well as to optimize the operation count. In this study, [...] Read more.
Matrix–matrix multiplication is of singular importance in linear algebra operations with a multitude of applications in scientific and engineering computing. Data structures for storing matrix elements are designed to minimize overhead information as well as to optimize the operation count. In this study, we utilize the notion of the compact diagonal storage method (CDM), which builds upon the previously developed diagonal storage—an orientation-independent uniform scheme to store the nonzero elements of a range of matrices. This study exploits both these storage schemes and presents efficient GPU-accelerated parallel implementations of matrix multiplication when the input matrices are banded and/or structured sparse. We exploit the data layouts in the diagonal storage schemes to expose a substantial amount of fine-grained parallelism and effectively utilize the GPU shared memory to improve the locality of data access for numerical calculations. Results from an extensive set of numerical experiments with the aforementioned types of matrices demonstrate orders-of-magnitude speedups compared with the sequential performance. Full article
(This article belongs to the Collection Parallel and Distributed Computing: Algorithms and Applications)
Show Figures

Figure 1

16 pages, 4615 KiB  
Article
Quantum-Inspired Neural Network Model of Optical Illusions
Algorithms 2024, 17(1), 30; https://doi.org/10.3390/a17010030 - 10 Jan 2024
Viewed by 360
Abstract
Ambiguous optical illusions have been a paradigmatic object of fascination, research and inspiration in arts, psychology and video games. However, accurate computational models of perception of ambiguous figures have been elusive. In this paper, we design and train a deep neural network model [...] Read more.
Ambiguous optical illusions have been a paradigmatic object of fascination, research and inspiration in arts, psychology and video games. However, accurate computational models of perception of ambiguous figures have been elusive. In this paper, we design and train a deep neural network model to simulate human perception of the Necker cube, an ambiguous drawing with several alternating possible interpretations. Defining the weights of the neural network connection using a quantum generator of truly random numbers, in agreement with the emerging concepts of quantum artificial intelligence and quantum cognition, we reveal that the actual perceptual state of the Necker cube is a qubit-like superposition of the two fundamental perceptual states predicted by classical theories. Our results finds applications in video games and virtual reality systems employed for training of astronauts and operators of unmanned aerial vehicles. They are also useful for researchers working in the fields of machine learning and vision, psychology of perception and quantum–mechanical models of human mind and decision making. Full article
(This article belongs to the Special Issue Applications of AI and Data Engineering in Science)
Show Figures

Figure 1

26 pages, 21938 KiB  
Article
Navigating the Maps: Euclidean vs. Road Network Distances in Spatial Queries
Algorithms 2024, 17(1), 29; https://doi.org/10.3390/a17010029 - 10 Jan 2024
Viewed by 282
Abstract
Using spatial data in mobile applications has grown significantly, thereby empowering users to explore locations, navigate unfamiliar areas, find transportation routes, employ geomarketing strategies, and model environmental factors. Spatial databases are pivotal in efficiently storing, retrieving, and manipulating spatial data to fulfill users’ [...] Read more.
Using spatial data in mobile applications has grown significantly, thereby empowering users to explore locations, navigate unfamiliar areas, find transportation routes, employ geomarketing strategies, and model environmental factors. Spatial databases are pivotal in efficiently storing, retrieving, and manipulating spatial data to fulfill users’ needs. Two fundamental spatial query types, k-nearest neighbors (kNN) and range search, enable users to access specific points of interest (POIs) based on their location, which are measured by actual road distance. However, retrieving the nearest POIs using actual road distance can be computationally intensive due to the need to find the shortest distance. Using straight-line measurements could expedite the process but might compromise accuracy. Consequently, this study aims to evaluate the accuracy of the Euclidean distance method in POIs retrieval by comparing it with the road network distance method. The primary focus is determining whether the trade-off between computational time and accuracy is justified, thus employing the Open Source Routing Machine (OSRM) for distance extraction. The assessment encompasses diverse scenarios and analyses factors influencing the accuracy of the Euclidean distance method. The methodology employs a quantitative approach, thereby categorizing query points based on density and analyzing them using kNN and range query methods. Accuracy in the Euclidean distance method is evaluated against the road network distance method. The results demonstrate peak accuracy for kNN queries at k=1, thus exceeding 85% across classes but declining as k increases. Range queries show varied accuracy based on POI density, with higher-density classes exhibiting earlier accuracy increases. Notably, datasets with fewer POIs exhibit unexpectedly higher accuracy, thereby providing valuable insights into spatial query processing. Full article
(This article belongs to the Special Issue Recent Advances in Computational Intelligence for Path Planning)
Show Figures

Figure 1

18 pages, 1954 KiB  
Article
Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking
Algorithms 2024, 17(1), 28; https://doi.org/10.3390/a17010028 - 10 Jan 2024
Viewed by 239
Abstract
Software specifications are of great importance to improve the quality of software. To automatically mine specifications from software systems, some specification mining approaches based on finite-state automatons have been proposed. However, these approaches are inaccurate when dealing with large-scale systems. In order to [...] Read more.
Software specifications are of great importance to improve the quality of software. To automatically mine specifications from software systems, some specification mining approaches based on finite-state automatons have been proposed. However, these approaches are inaccurate when dealing with large-scale systems. In order to improve the accuracy of mined specifications, we propose a specification mining approach based on the ordering points to identify the clustering structure clustering algorithm and model checking. In the approach, the neural network model is first used to produce the feature values of states in the traces of the program. Then, according to the feature values, finite-state automatons are generated based on the ordering points to identify the clustering structure clustering algorithm. Further, the finite-state automaton with the highest F-measure is selected. To improve the quality of the finite-state automatons, we refine it based on model checking. The proposed approach was implemented in a tool named MCLSM and experiments, including 13 target classes, were conducted to evaluate its effectiveness. The experimental results show that the average F-measure of finite-state automatons generated by our method reaches 92.19%, which is higher than most related tools. Full article
(This article belongs to the Special Issue Algorithms in Software Engineering)
Show Figures

Figure 1

17 pages, 1904 KiB  
Article
Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers
Algorithms 2024, 17(1), 27; https://doi.org/10.3390/a17010027 - 10 Jan 2024
Viewed by 288
Abstract
The growing popularity of e-commerce has prompted researchers to take a greater interest in deeper understanding online shopping behavior, consumer interest patterns, and the effectiveness of advertising campaigns. This paper presents a fresh approach for targeting high-value e-shop clients by utilizing clickstream data. [...] Read more.
The growing popularity of e-commerce has prompted researchers to take a greater interest in deeper understanding online shopping behavior, consumer interest patterns, and the effectiveness of advertising campaigns. This paper presents a fresh approach for targeting high-value e-shop clients by utilizing clickstream data. We propose the new algorithm to measure customer engagement and recognizing high-value customers. Clickstream data is employed in the algorithm to compute a Customer Merit (CM) index that measures the customer’s level of engagement and anticipates their purchase intent. The CM index is evaluated dynamically by the algorithm, examining the customer’s activity level, efficiency in selecting items, and time spent in browsing. It combines tracking customers browsing and purchasing behaviors with other relevant factors: time spent on the website and frequency of visits to e-shops. This strategy proves highly beneficial for e-commerce enterprises, enabling them to pinpoint potential buyers and design targeted advertising campaigns exclusively for high-value customers of e-shops. It allows not only boosts e-shop sales but also minimizes advertising expenses effectively. The proposed method was tested on actual clickstream data from two e-commerce websites and showed that the personalized advertising campaign outperformed the non-personalized campaign in terms of click-through and conversion rate. In general, the findings suggest, that personalized advertising scenarios can be a useful tool for boosting e-commerce sales and reduce advertising cost. By utilizing clickstream data and adopting a targeted approach, e-commerce businesses can attract and retain high-value customers, leading to higher revenue and profitability. Full article
(This article belongs to the Collection Feature Papers in Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

34 pages, 4687 KiB  
Article
Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models
Algorithms 2024, 17(1), 26; https://doi.org/10.3390/a17010026 - 09 Jan 2024
Viewed by 418
Abstract
It is difficult to determine unknown solar cell and photovoltaic (PV) module parameters owing to the nonlinearity of the characteristic current–voltage (I-V) curve. Despite this, precise parameter estimation is necessary due to the substantial effect parameters have on the efficacy of the PV [...] Read more.
It is difficult to determine unknown solar cell and photovoltaic (PV) module parameters owing to the nonlinearity of the characteristic current–voltage (I-V) curve. Despite this, precise parameter estimation is necessary due to the substantial effect parameters have on the efficacy of the PV system with respect to current and energy results. The problem’s characteristics make the handling of algorithms susceptible to local optima and resource-intensive processing. To effectively extract PV model parameter values, an improved hybrid Sparrow Search Algorithm (SSA) with Exponential Distribution Optimization (EDO) based on the Differential Evolution (DE) technique and the bound-constraint modification procedure, called ISSAEDO, is presented in this article. The hybrid strategy utilizes EDO to improve global exploration and SSA to effectively explore the solution space, while DE facilitates local search to improve parameter estimations. The proposed method is compared to standard optimization methods using solar PV system data to demonstrate its effectiveness and speed in obtaining PV model parameters such as the single diode model (SDM) and the double diode model (DDM). The results indicate that the hybrid technique is a viable instrument for enhancing solar PV system design and performance analysis because it can predict PV model parameters accurately. Full article
Show Figures

Figure 1

14 pages, 2547 KiB  
Article
Particle Swarm Optimization-Based Unconstrained Polygonal Fitting of 2D Shapes
Algorithms 2024, 17(1), 25; https://doi.org/10.3390/a17010025 - 07 Jan 2024
Viewed by 372
Abstract
In this paper, we present a general version of polygonal fitting problem called Unconstrained Polygonal Fitting (UPF). Our goal is to represent a given 2D shape S with an N-vertex polygonal curve P with a known number of vertices, so that the Intersection [...] Read more.
In this paper, we present a general version of polygonal fitting problem called Unconstrained Polygonal Fitting (UPF). Our goal is to represent a given 2D shape S with an N-vertex polygonal curve P with a known number of vertices, so that the Intersection over Union (IoU) metric between S and P is maximized without any assumption or prior knowledge of the object structure and the location of the N-vertices of P that can be placed anywhere in the 2D space. The search space of the UPF problem is a superset of the classical polygonal approximation (PA) problem, where the vertices are constrained to belong in the boundary of the given 2D shape. Therefore, the resulting solutions of the UPF may better approximate the given curve than the solutions of the PA problem. For a given number of vertices N, a Particle Swarm Optimization (PSO) method is used to maximize the IoU metric, which yields almost optimal solutions. Furthermore, the proposed method has also been implemented under the equal area principle so that the total area covered by P is equal to the area of the original 2D shape to measure how this constraint affects IoU metric. The quantitative results obtained on more than 2800 2D shapes included in two standard datasets quantify the performance of the proposed methods and illustrate that their solutions outperform baselines from the literature. Full article
Show Figures

Figure 1

32 pages, 703 KiB  
Article
Entropy and the Kullback–Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation
Algorithms 2024, 17(1), 24; https://doi.org/10.3390/a17010024 - 06 Jan 2024
Viewed by 361
Abstract
Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl’s causality, and determines their explainability and interpretability. Despite their popularity, there [...] Read more.
Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl’s causality, and determines their explainability and interpretability. Despite their popularity, there are almost no resources in the literature on how to compute Shannon’s entropy and the Kullback–Leibler (KL) divergence for BNs under their most common distributional assumptions. In this paper, we provide computationally efficient algorithms for both by leveraging BNs’ graphical structure, and we illustrate them with a complete set of numerical examples. In the process, we show it is possible to reduce the computational complexity of KL from cubic to quadratic for Gaussian BNs. Full article
(This article belongs to the Special Issue Bayesian Networks and Causal Reasoning)
Show Figures

Figure 1

15 pages, 3185 KiB  
Article
A New Approach to Identifying Sorghum Hybrids Using UAV Imagery Using Multispectral Signature and Machine Learning
Algorithms 2024, 17(1), 23; https://doi.org/10.3390/a17010023 - 05 Jan 2024
Viewed by 353
Abstract
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processing by machine learning (ML) algorithms, can provide fast, accurate, and [...] Read more.
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processing by machine learning (ML) algorithms, can provide fast, accurate, and large-scale discrimination of genotypes in the field, which is crucial for improving the efficiency of breeding programs. Despite their importance, studies aimed at accurately classifying sorghum hybrids using spectral variables as input sets in ML models are still scarce in the literature. Against this backdrop, this study aimed: (I) to discriminate sorghum hybrids based on canopy reflectance in different spectral bands (SB) and vegetation indices (VIs); (II) to evaluate the performance of ML algorithms in classifying sorghum hybrids; (III) to evaluate the best dataset input for the algorithms. A field experiment was carried out in the 2022 crop season in a randomized block design with three replications and six sorghum hybrids. At 60 days after crop emergence, a flight was carried out over the experimental area using the Sensefly eBee real time kinematic. The spectral bands (SB) acquired by the sensor were: blue (475 nm, B_475), green (550 nm, G_550), red (660 nm, R_660), Rededge (735 nm, RE_735) e NIR (790 nm, NIR_790). From the SB acquired, vegetation indices (VIs) were calculated. Data were submitted to ML classification analysis, in which three input settings (using only SB, using only VIs, and using SB + VIs) and six algorithms were tested: artificial neural networks (ANN), support vector machine (SVM), J48 decision trees (J48), random forest (RF), REPTree (DT) and logistic regression (LR, conventional technique used as a control). There were differences in the spectral signature of each sorghum hybrid, which made it possible to differentiate them using SBs and VIs. The ANN algorithm performed best for the three accuracy metrics tested, regardless of the input used. In this case, the use of SB is feasible due to the speed and practicality of analyzing the data, as it does not require calculations to perform the VIs. RF showed better accuracy when VIs were used as an input. The use of VIs provided the best performance for all the algorithms, as did the use of SB + VIs which provided good performance for all the algorithms except RF. Using ML algorithms provides accurate identification of the hybrids, in which ANNs using only SB and RF using VIs as inputs stand out (above 55 for CC, above 0.4 for kappa and around 0.6 for F-score). There were differences in the spectral signature of each sorghum hybrid, which makes it possible to differentiate them using wavelengths and vegetation indices. Processing the multispectral data using machine learning techniques made it possible to accurately differentiate the hybrids, with emphasis on artificial neural networks using spectral bands as inputs and random forest using vegetation indices as inputs. Full article
Show Figures

Figure 1

18 pages, 5560 KiB  
Article
Towards Full Forward On-Tiny-Device Learning: A Guided Search for a Randomly Initialized Neural Network
Algorithms 2024, 17(1), 22; https://doi.org/10.3390/a17010022 - 05 Jan 2024
Viewed by 487
Abstract
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger privacy, data safety and robustness to adversarial attacks, higher [...] Read more.
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger privacy, data safety and robustness to adversarial attacks, higher resilience against concept drift, etc. However, On-Device Learning on resource constrained devices poses severe limitations to computational power and memory. Therefore, deploying Neural Networks on tiny devices appears to be prohibitive, since their backpropagation-based training is too memory demanding for their embedded assets. Using Extreme Learning Machines based on Convolutional Neural Networks might be feasible and very convenient, especially for Feature Extraction tasks. However, it requires searching for a randomly initialized topology that achieves results as good as those achieved by the backpropagated model. This work proposes a novel approach for automatically composing an Extreme Convolutional Feature Extractor, based on Neural Architecture Search and Bayesian Optimization. It was applied to the CIFAR-10 and MNIST datasets for evaluation. Two search spaces have been defined, as well as a search strategy that has been tested with two surrogate models, Gaussian Process and Random Forest. A performance estimation strategy was defined, keeping the feature set computed by the MLCommons-Tiny benchmark ResNet as a reference model. In as few as 1200 search iterations, the proposed strategy was able to achieve a topology whose extracted features scored a mean square error equal to 0.64 compared to the reference set. Further improvements are required, with a target of at least one order of magnitude decrease in mean square error for improved classification accuracy. The code is made available via GitHub to allow for the reproducibility of the results reported in this paper. Full article
Show Figures

Figure 1

38 pages, 10361 KiB  
Article
Exploring the Use of Artificial Intelligence in Agent-Based Modeling Applications: A Bibliometric Study
Algorithms 2024, 17(1), 21; https://doi.org/10.3390/a17010021 - 03 Jan 2024
Viewed by 511
Abstract
This research provides a comprehensive analysis of the dynamic interplay between agent-based modeling (ABM) and artificial intelligence (AI) through a meticulous bibliometric study. This study reveals a substantial increase in scholarly interest, particularly post-2006, peaking in 2021 and 2022, indicating a contemporary surge [...] Read more.
This research provides a comprehensive analysis of the dynamic interplay between agent-based modeling (ABM) and artificial intelligence (AI) through a meticulous bibliometric study. This study reveals a substantial increase in scholarly interest, particularly post-2006, peaking in 2021 and 2022, indicating a contemporary surge in research on the synergy between AI and ABM. Temporal trends and fluctuations prompt questions about influencing factors, potentially linked to technological advancements or shifts in research focus. The sustained increase in citations per document per year underscores the field’s impact, with the 2021 peak suggesting cumulative influence. Reference Publication Year Spectroscopy (RPYS) reveals historical patterns, and the recent decline prompts exploration into shifts in research focus. Lotka’s law is reflected in the author’s contributions, supported by Pareto analysis. Journal diversity signals extensive exploration of AI applications in ABM. Identifying impactful journals and clustering them per Bradford’s Law provides insights for researchers. Global scientific production dominance and regional collaboration maps emphasize the worldwide landscape. Despite acknowledging limitations, such as citation lag and interdisciplinary challenges, our study offers a global perspective with implications for future research and as a resource in the evolving AI and ABM landscape. Full article
(This article belongs to the Special Issue Artificial Intelligence in Modeling and Simulation)
Show Figures

Figure 1

Back to TopTop