Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,803)

Search Parameters:
Journal = Minerals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11811 KiB  
Article
Study on the Hydrothermal Superposition Period: Mineralization–Alteration Zoning Model and Zoning Mechanism of the Dahongshan Fe-Cu Deposit in Yunnan Province
Minerals 2024, 14(1), 96; https://doi.org/10.3390/min14010096 - 15 Jan 2024
Abstract
The Dahongshan large-scale iron (Fe)–copper (Cu) polymetallic deposit is in the Proterozoic metallogenic domain on the western margin of the Yangtze Block. It is a typical representative of Fe-Cu polymetallic composite mineralization in the Kangdian area. The deposit comprises a group of layered [...] Read more.
The Dahongshan large-scale iron (Fe)–copper (Cu) polymetallic deposit is in the Proterozoic metallogenic domain on the western margin of the Yangtze Block. It is a typical representative of Fe-Cu polymetallic composite mineralization in the Kangdian area. The deposit comprises a group of layered orebodies formed by volcanic exhalation sedimentation and metamorphism, and a group of vein-like orebodies formed by hydrothermal superposition. The large-scale mapping of altered lithofacies in the deposit has resolved issues of weak links and unclear mineralization and alteration zoning of hydrothermal superimposed deposits within the study area. The mineralization type, hydrothermal alteration type and intensity, mineral assemblage, and mineral structure of the vein-type Cu polymetallic deposits during the hydrothermal superposition period are meticulously analyzed and studied. Finally, the zoning relationships of vein orebodies (mineralization) are summarized. On the basis of the results of the study of the distribution pattern of this mineral body, a mineralization alteration zoning model of the hydrothermal superposition period is constructed. The results show that the alteration is primarily silicification, carbonation, and chloritization, and the mineralization is chalcopyrite, bornite, chalcocite, and pyrite. The Dibadu anticline and the cutting layer faults and fractures strictly control the hydrothermal alteration zoning. The mineralization alteration zoning from the core to the flank is divided into coarse vein zone (I) → stockwork zone (II) → veinlet zone (III). The corresponding mineral assemblages are quartz–calcite–chalcocite–bornite–(native copper) (I) → calcite–dolomite–quartz–bornite–chalcopyrite–chlorite (II) → dolomite–quartz–chalcopyrite–(pyrite) (III), where the stockwork zone has the most substantial mineralization. The mineral assemblages of each alteration zone, the characteristics of rare earth elements of typical samples, and the test results on the fluid inclusions confirm that pH and Eh primarily control the zoning mechanism. This study has significance for deepening the understanding of the composite metallogenic system, guiding deep and peripheral prospecting, and providing significant enlightenment for the study of this type of deposit. Full article
Show Figures

Figure 1

20 pages, 12205 KiB  
Article
Mineralogy and Geochemistry of High-Sulfur Coals from the M8 Coal Seam, Shihao Mine, Songzao Coalfield, Chongqing, Southwestern China
Minerals 2024, 14(1), 95; https://doi.org/10.3390/min14010095 - 15 Jan 2024
Viewed by 106
Abstract
Mineral matter, including minerals and non-mineral elements, in coal is of great significance for geological evolution, high-value coal utilization, and environment protection. The minerals and elemental geochemistry of Late Permian coals from the M8 coal seam, Shihao mine, Songzao coalfield in Chongqing, were [...] Read more.
Mineral matter, including minerals and non-mineral elements, in coal is of great significance for geological evolution, high-value coal utilization, and environment protection. The minerals and elemental geochemistry of Late Permian coals from the M8 coal seam, Shihao mine, Songzao coalfield in Chongqing, were analyzed to evaluate the sediment source, sedimentary environment, hydrothermal fluids, and utilization prospects of critical metals. The average total sulfur (4.21%) was high in coals, which mainly exists in the forms of pyritic sulfur. Kaolinite, pyrite, calcite, quartz, illite and illite/smectite (I/S) mixed layers, and anatase predominated in coals, with trace amounts of chlorite, ankerite, and siderite. Epigenetic cell- and fracture-filling pyrite, veined calcite, and ankerite were related to hydrothermal fluids and/or pore water after the diagenesis stage. Compared to the world’s hard coals, As and Cd are enriched in the Shihao M8 coals, and Li, Cr, Co, Zr, Mo, Pb, and Tb are slightly enriched. These high contents of sulfophile elements may be related to seawater intrusion. The terrigenous clastics of the Shihao M8 coals originated from the felsic–intermediate rocks atop the Emeishan Large Igneous Provinces (ELIP) (Kangdian Upland), while the roof and floor samples were derived from Emeishan high-Ti basalt. Through the combination of sulfur contents and indicator parameters of Fe2O3 + CaO + MgO/SiO2 + Al2O3, Sr/Ba and Y/Ho, the depositional environment of peat swamp was found to be influenced by seawater. Although the critical elements in coal or coal ash did not reach the cut-off grade for beneficial recovery, the concentration of Li and Zr were high enough in coal ash. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

16 pages, 7836 KiB  
Article
Lake-Level-Fluctuation Control on Shale Oil Enrichment of the Salinized Lacustrine Organic-Rich Shale in the Paleogene Biyang Depression, East China
Minerals 2024, 14(1), 94; https://doi.org/10.3390/min14010094 - 14 Jan 2024
Viewed by 205
Abstract
The paleolake level, which is controlled by the moisture balance (precipitation minus evaporation) within the lake basin, is a significant factor in determining the deposition of lacustrine organic-rich shale (LORS) across geological time, and hence influences shale oil enrichment. However, the impact of [...] Read more.
The paleolake level, which is controlled by the moisture balance (precipitation minus evaporation) within the lake basin, is a significant factor in determining the deposition of lacustrine organic-rich shale (LORS) across geological time, and hence influences shale oil enrichment. However, the impact of lake-level-fluctuations on shale oil enrichment of LORS is not well understood. Based on an integration of bulk geochemistry, organic petrography, pyrolysis gas chromatography, and element compositions, we address this issue using the Paleogene Biyang Depression in East China as an example. High lake levels, combined with anoxic–suboxic conditions, brackish–saline water, high productivity, and low detrital influx, are favorable for LORS deposition, which is characterized by a large distribution area and thickness, a high potential for oil generation and emplacement, and a high free shale oil content. In contrast, LORS deposited during low lake levels, with suboxic–dysoxic conditions, fresh–brackish water, low productivity, and high detrital influx, has a small distribution area and thickness, a low potential for oil generation and emplacement, and a low free shale oil content (a comparable maturity was present in all the studied LORS). Our data suggests that the elevated lake level led to higher salinity, stronger reduction conditions, higher productivity, and lower clastic inflow in the paleolake, forming LORS with higher shale oil potential. It has a positive effect on shale oil enrichment of LORS. The findings are also applicable to regional shale oil exploration. Full article
Show Figures

Graphical abstract

24 pages, 4197 KiB  
Review
Applications of Clays in Nanocomposites and Ceramics
Minerals 2024, 14(1), 93; https://doi.org/10.3390/min14010093 - 13 Jan 2024
Viewed by 186
Abstract
Clays and clay minerals are common natural materials, the unique properties of which have attracted the interest of the industry, especially because these materials are easily available, cheap, and non-toxic. Clays and clay minerals are widely used in many applications, such as in [...] Read more.
Clays and clay minerals are common natural materials, the unique properties of which have attracted the interest of the industry, especially because these materials are easily available, cheap, and non-toxic. Clays and clay minerals are widely used in many applications, such as in ceramic production, in the clarification of liquids, pollutant adsorbers, filler in composites and nanocomposites, soil amendments, in pharmacy, etc. This review assesses the development in the area of clay application in nanocomposites and ceramics. The first part of this study covers polymer/clay nanocomposites. Topics of interest include nanofiller sources for polymer nanocomposites, the possible ways of clay modification, polymer/clay nanocomposite classification and their processing, and polymer matrix overview with possible enhancement of nanocomposite properties. Some of the applications have already been commercialized. Approximately 80% of the polymer/clay nanocomposites are destined for the automotive, aeronautical, and packaging industries. The second part of this study describes ceramic materials with a focus on silicate ceramics. Talc and kaolinite represent the main natural raw materials for traditional ceramic applications. Less traditional cordierite, steatite, and forsterite could offer property enhancement and seem to be useful in electronics, electrical engineering, catalysts, solar thermal storage, or medical applications. Full article
(This article belongs to the Special Issue Clay Minerals and Waste Fly Ash Ceramics, Volume II)
Show Figures

Graphical abstract

15 pages, 5381 KiB  
Article
Characteristics of Electrical Resistance Alteration during In Situ Leaching of Ion-Adsorption-Type Rare Earth Ore
Minerals 2024, 14(1), 92; https://doi.org/10.3390/min14010092 - 13 Jan 2024
Viewed by 166
Abstract
The chemical reaction of ion-adsorption-type rare earth ore during the in situ leaching process is accompanied by ion migration and charge movement, making the leaching process electrochemical in nature. The chemical reaction rate plays an important role in the leaching rate of rare [...] Read more.
The chemical reaction of ion-adsorption-type rare earth ore during the in situ leaching process is accompanied by ion migration and charge movement, making the leaching process electrochemical in nature. The chemical reaction rate plays an important role in the leaching rate of rare earth elements. In this work, electrochemical impedance spectroscopy (EIS) was used to reveal the characteristics of electrical resistance alterations and leaching rate of rare earth elements during in situ leaching. The equivalent circuit model of the leaching process was established, and two critical parameters of solution resistance Rs and charge transfer resistance Rt were analyzed to reflect the electrochemical characteristics. According to the characteristics of electrical resistance alteration, the leaching process was divided into four stages: wetting, reaction, equilibrium, and top water stage. The resistance parameters Rs and Rt decreased first and then increased during the leaching process. The maximum value of Rs was 1330 Ω∙cm2 at the end of the top water stage, and the minimum value was 125 Ω∙cm2 at the beginning of the equilibrium stage. The maximum value of Rt was 8310 Ω∙cm2 at the beginning of the leaching stage, and the minimum value was 21 Ω∙cm2 at the end of the reaction stage. Rs and Rt were negatively correlated with the pore size and chemical reaction rate during leaching. With an increasing pore size and reaction rate, the resistance parameters decrease. This study provides a new idea for the intelligent monitoring of rare earth ore. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

31 pages, 20186 KiB  
Article
The Use of Lime over the Centuries: The Complexity of the Apulian Built Heritage
Minerals 2024, 14(1), 91; https://doi.org/10.3390/min14010091 - 12 Jan 2024
Viewed by 199
Abstract
In the field of historical buildings, the wide use of lime as a binder in various contexts of application emerges from a series of artistic and archaeological evidence in the Apulia (Italy) from the 4th century BCE to the 15th century CE. The [...] Read more.
In the field of historical buildings, the wide use of lime as a binder in various contexts of application emerges from a series of artistic and archaeological evidence in the Apulia (Italy) from the 4th century BCE to the 15th century CE. The large availability of carbonate rocks in the geological substratum from Daunian Subappennines to Salento areas strongly influenced the material culture of the region. In this paper, significant study cases were presented to bring to light the technological complexity, almost completely cancelled by the widespread presence of industrial products, in the use of lime over the centuries. Through examples of use from antiquity to the modern age in Apulia (Egnatia, Lamapopoli, Tertiveri, Siponto, Lucera and Monopoli sites), technological solutions indicating an ecological dimension of production were discussed, bearing witness to technologies on a human scale and sustainability. The comparison of petrographical (POM, SEM-EDS) and mineralogical (XRPD) results indicated the technological trend and custom for lime production in the Apulian region that starts from the choice of the stone to be calcined and the aggregates and passes through the modalities of lime hydration and preparation of the mixture up to the laying. Full article
(This article belongs to the Special Issue Archaeological Mineralogy)
Show Figures

Graphical abstract

12 pages, 2127 KiB  
Article
Recovery of Noble Metals (Au, Pt, Ir, and Ta) from Spent Single-Use Medical–Technological Products
Minerals 2024, 14(1), 90; https://doi.org/10.3390/min14010090 - 12 Jan 2024
Viewed by 256
Abstract
Due to their unique properties, i.e., fluoroscopy response and inertness, noble metals and alloys are present in several widespread medical–technological products, such as catheters, guide-wires, and stents. Despite their value, these products serve as single-use consumables, following a fate of solid waste disposal [...] Read more.
Due to their unique properties, i.e., fluoroscopy response and inertness, noble metals and alloys are present in several widespread medical–technological products, such as catheters, guide-wires, and stents. Despite their value, these products serve as single-use consumables, following a fate of solid waste disposal and loss of their valuable metals. This work studies the development of a treatment methodology to recover noble metals such as Pt, Ir, Au, and Ta from certain commercial products commonly used for medical practices. In particular, a sequence of preliminary pyrolysis, aiming at polymer elimination, as well as an acid digestion step for selective metals dissolution, is suggested. Pyrolysis was capable of enriching samples with the targeted metals, though a small change in their oxidation states was observed. Still, acid digestion was fully able to successfully separate Au using a 50% v/v aqua regia solution for 30 min at room temperature and the Pt/Ir using concentrated aqua regia for 72 h under heating. Dissolution of Ta required a different leaching solution, i.e., a 50% v/v HF/H2SO4 mixture for 10 h under heating. According to the developed method, selective extraction of such noble metals in a concentrated slurry provides a high potential for the complete recovery and valorization of otherwise disposed medical wastes. Full article
Show Figures

Figure 1

15 pages, 9365 KiB  
Article
Petrogenesis and Geodynamic Implications of Cretaceous Nb-Enriched Mafic Dykes in the East Kunlun Orogen, Northern Tibet Plateau: Constraints from Geochronology, Geochemistry and Sr-Nd Isotopes
Minerals 2024, 14(1), 89; https://doi.org/10.3390/min14010089 - 12 Jan 2024
Viewed by 195
Abstract
There is a magmatic lull period in the East Kunlun orogen (EKO) during the Jurassic to the Cretaceous. However, due to the lack of records of magmatic activity restricts our understanding of the late Mesozoic magmatic-tectonic evolution of the EKO. Herein, an integrated [...] Read more.
There is a magmatic lull period in the East Kunlun orogen (EKO) during the Jurassic to the Cretaceous. However, due to the lack of records of magmatic activity restricts our understanding of the late Mesozoic magmatic-tectonic evolution of the EKO. Herein, an integrated study of geochronology, whole-rock geochemistry and Sr-Nd isotopes were conducted for the Cretaceous mafic dykes in the EKO, Northern Tibet Plateau, to reveal their petrogenesis and geodynamic implications. LA-ICP-MS Zircon U-Pb dating reveals that the studied mafic dykes comprising diabase and diabase porphyry emplaced at ca. 80.9 ± 0.8 Ma. The Cretaceous mafic dykes have low contents of SiO2 (46.36 wt.%~47.40 wt.%) but high contents of MgO (6.79 wt.%~7.38 wt.%), TiO2 (1.91 wt.%~2.13 wt.%), Nb (12.4~18.3 ppm) and Nb/U ratio (31~39), resembling Nb-enriched mafic dykes. They exhibit chondrite-normalized rare earth element (REE) and primitive mantle-normalized trace element patterns, remarkably similar but not identical to the oceanic island basalts (OIB). The moderate REE fractionation ((La/Yb)N = 3.55~5.37), weak negative Eu anomalies (δEu = 0.87~0.97) and relative enrichment of Rb, Ba, K, as well as high contents of Cr and Ni and slightly depleted Sr-Nd isotopes (εNd(t) = −0.18~1.33), suggest that the studied dykes originate from a partial melting of spinel lherzolite and a little of garnet which was previously modified by subducted sediments. Combined with other evidence, we propose that the studied Cretaceous Nb-enriched mafic dykes in the Northern Tibet Plateau were formed in the intraplate setting, which may be a partial melting of the enriched mantle in the lower lithosphere caused by the activity of the East Kunlun strike-slip fault. Full article
(This article belongs to the Special Issue Petrogenesis, Magmatism and Geodynamics of Orogenic Belts)
Show Figures

Figure 1

22 pages, 3808 KiB  
Article
Studying the Flotation of Gold-Bearing Ores Using Carrier Minerals
Minerals 2024, 14(1), 88; https://doi.org/10.3390/min14010088 - 11 Jan 2024
Viewed by 302
Abstract
This work is aimed at the analysis of the development of flotation technology by applying carrier minerals. Based on the concepts of continuum mechanics, a theoretical analysis of the influence of the carrier minerals (wall) on the motion of a single solid particle [...] Read more.
This work is aimed at the analysis of the development of flotation technology by applying carrier minerals. Based on the concepts of continuum mechanics, a theoretical analysis of the influence of the carrier minerals (wall) on the motion of a single solid particle is provided, taking into account their hydrodynamic interaction (in the case of low Reynolds numbers). A correction was obtained in the form of a ratio of the particle size to its distance from the wall to take into account the influence of the wall on the hydrodynamic force acting on the particle. The influence of the wall is manifested through a rapid approximation of the liquid vortex flow in the gap between the solid wall and the particle to the steady-state mode, accompanied by the suppression of the transverse movement of particles. When the liquid slides along a wall-mounted gas–liquid layer with a reduced viscosity, the liquid flow increases in the interfacial gap, which can be analyzed by a dimensionless correction that includes values describing the properties of a continuous medium (dynamic viscosity) and a disperse phase (geometric particle size). The reason for the decrease in the induction time when gold grains adhere to each other is assumed to be due to the forces of hydrophobic attraction (when the grains have a mirror-smooth surface) and the sliding of the flow along the hydrophobic surface of the particles along the gas layer (when the grains have a rough surface). When polydisperse particles are aggregated, the threshold energy of the fast coagulation was established to be lower than that arising during the interaction of monodisperse particles, whose aggregation requires a large depth of the potential pit. Performing natural experiments on the ore using a rougher concentrate as a carrier material showed that the concentrate yield decreases by 20.52% rel. In the second case, the gold extraction was higher by 4.69% abs. While maintaining the achieved level of gold extraction, the double mixing of the rougher concentrate and the initial feed increased the gold content in the rougher concentrate from 4.97 to 6.29 g/t. Full article
(This article belongs to the Special Issue Design, Modeling, Optimization and Control of Flotation Process)
Show Figures

Figure 1

30 pages, 14011 KiB  
Article
Fluid Evolution of Greisens from Krupka Sn-W Ore District, Bohemian Massif (Czech Republic)
Minerals 2024, 14(1), 86; https://doi.org/10.3390/min14010086 - 11 Jan 2024
Viewed by 309
Abstract
The Sn-W ore deposits in the Krupka surroundings are associated with greisens, which occur in the upper parts of Late Variscan granitoid intrusions. Fluid inclusions were studied in samples of quartz, cassiterite, apatite, fluorite, and topaz in greisenized granites, greisens, and hydrothermal veins [...] Read more.
The Sn-W ore deposits in the Krupka surroundings are associated with greisens, which occur in the upper parts of Late Variscan granitoid intrusions. Fluid inclusions were studied in samples of quartz, cassiterite, apatite, fluorite, and topaz in greisenized granites, greisens, and hydrothermal veins with Sn-W mineralization. The greisenization process took place at temperatures 370–490 °C and pressures 155–371 bars, and associated fluids had predominantly low salinity and a low gas (CO2, N2 and CH4) content. The post-greisenization stage was connected with the formation of (i) low-salinity (0–8 wt. % NaCl eq.) fluid inclusions with homogenization temperatures <120–295 °C and (ii) high-salinity (18 to >35 wt. % NaCl eq.) fluid inclusions with homogenization temperatures 140–370 °C, often containing trapped crystals of quartz, topaz, and sulfides, or daughter crystals of salts and carbonates, which were identified by microthermometric measurements, electron microprobe analysis, and Raman spectroscopy. Analyses of fluid inclusion leachates have shown that Na and Ca chlorides predominate in fluids. According to hydrogen stable isotopes, the source of greisenizing and post-greisenizing fluids was not only magmatogenic but also meteoric water or fluids derived from sedimentary rocks. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Graphical abstract

33 pages, 104359 KiB  
Article
Origin of Zn-Pb Mineralization of the Vein Bt23C, Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic: Constraints from Occurrence of Immiscible Aqueous–Carbonic Fluids
Minerals 2024, 14(1), 87; https://doi.org/10.3390/min14010087 - 11 Jan 2024
Viewed by 220
Abstract
The mineralogical, fluid inclusion, and stable isotope (C, O) study was conducted on a Late Variscan Zn-Pb vein Bt23C, Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The vein is hosted by folded Proterozoic clastic sediments in exo-contact of a Devonian-to-Lower-Carboniferous granitic [...] Read more.
The mineralogical, fluid inclusion, and stable isotope (C, O) study was conducted on a Late Variscan Zn-Pb vein Bt23C, Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The vein is hosted by folded Proterozoic clastic sediments in exo-contact of a Devonian-to-Lower-Carboniferous granitic pluton. Siderite, dolomite-ankerite, calcite, quartz, baryte, galena, sphalerite, V-rich mica (roscoelite to an unnamed V-analogue of illite), and chlorite (chamosite) form the studied vein samples. The banded texture of the vein was modified by the episodic dissolution of earlier carbonates and/or sphalerite. Petrographic, microthermometric, and Raman studies of fluid inclusions proved a complicated fluid evolution, related to the activity of aqueous fluids and to an episode involving an aqueous–carbonic fluid mixture. Homogenization temperatures of aqueous inclusions decreased from ~210 to ~50 °C during the evolution of the vein, and salinity varied significantly from pure water up to 27 wt.% NaCl eq. The aqueous–carbonic fluid inclusions hosted by late quartz show highly variable phase compositions caused by the entrapment of accidental mixtures of a carbonic and an aqueous phase. Carbonic fluid is dominated by CO2 with minor CH4 and N2, and the associated aqueous solution has a medium salinity (6–14 wt.% NaCl eq.). The low calculated fluid δ18O values (−4.7 to +3.6‰ V-SMOW) suggest a predominance of surface waters during the crystallization of dolomite-ankerite and calcite, combined with a well-mixed source of carbon with δ13C values ranging between −8.2 and −10.5‰ V-PDB. The participation of three fluid endmembers is probable: (i) early high-temperature high-salinity Na>Ca-Cl fluids from an unspecified “deep” source; (ii) late low-salinity low-temperature waters, likely infiltrating from overlying Permian freshwater partly evaporated piedmont basins; (iii) late high-salinity chloridic solutions with both high and low Ca/Na ratios, which can represent externally derived marine brines, and/or local shield brines. The source of volatiles can be (i) in deep crust, (ii) from interactions of fluids with sedimentary wall rocks and/or (iii) in overlying Permian piedmont basins containing, in places, coal seams. The event dealing with heterogeneous CO2-bearing fluids yielded constraints on pressure conditions of ore formation (100–270 bar) as well as on the clarification of some additional genetic aspects of the Příbram’s ores, including the reasons for the widespread dissolution of older vein fill, the possible re-cycling of some ore-forming components, pH changes, and occasionally observed carbon isotope shift due to CO2 degassing. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

28 pages, 13508 KiB  
Article
Hydrothermal Mineralization and Mineral Chemistry of Arsenides and Sulfarsenides in the Fe-Co-Ni-As-S System and Introduction of Three Potential New Minerals, Port Radium Deposit, Canada
Minerals 2024, 14(1), 85; https://doi.org/10.3390/min14010085 - 11 Jan 2024
Viewed by 246
Abstract
The Port Radium U-Cu-Ni-Co-Ag deposit in northwestern Canada is hosted within a mineral system that has generated a variety of mineralization styles from iron oxide-copper-gold to iron oxide-apatite, porphyry, skarn, and epithermal. Their genesis is linked to an extensive subduction-related magmatism that formed [...] Read more.
The Port Radium U-Cu-Ni-Co-Ag deposit in northwestern Canada is hosted within a mineral system that has generated a variety of mineralization styles from iron oxide-copper-gold to iron oxide-apatite, porphyry, skarn, and epithermal. Their genesis is linked to an extensive subduction-related magmatism that formed widespread dacite-rhyodacite-andesite volcanic and volcanoclastic sequences (~1.87 Ga), which have been intruded by their equivalent intrusive plutons. Pervasive and intensive hydrothermal alterations, including albitic, magnetite-actinolite-apatite, potassic ± albitic, phyllic, and propylitic occurred before the main sulfide, sulfarsenide, and uraninite vein-type mineralization. Although scarce sulfide minerals formed at the beginning of the hydrothermal activity, the main polymetallic arsenide-sulfarsenide-sulfide ± uraninite vein-type mineralization occurred during the epithermal stage. In addition to the common arsenides and sulfarsenides including nickeline, cobaltite, rammelsbergite, safflorite, skutterudite, gersdorffite, and arsenopyrite, three unique and potential new sulfarsenides were also found: Co0.67Ni0.32Fe0.02S0.19As2.80, which could be a sulfur-rich skutterudite, Ni0.85Co0.15S0.39As1.60, and Ni0.69Co0.31S0.47As1.52, which are chemically comparable to the Port Radium rammelsbergite with substantial addition of S and Co; they could be the solid solution product of gersdorffite-cobaltite or safflorite-rammelsbergite. Full article
Show Figures

Figure 1

12 pages, 2942 KiB  
Article
Study of a Novel Fluidized Bed Flotation Column with Enhanced Bubble Dispersion
Minerals 2024, 14(1), 84; https://doi.org/10.3390/min14010084 - 11 Jan 2024
Viewed by 191
Abstract
Flotation machines and flotation columns are widely used as separation equipment for coal sludge. In order to obtain better flotation results for different particle sizes, the bubble distribution and size in the flow field need to be studied. In this paper, a novel [...] Read more.
Flotation machines and flotation columns are widely used as separation equipment for coal sludge. In order to obtain better flotation results for different particle sizes, the bubble distribution and size in the flow field need to be studied. In this paper, a novel three-phase fluidized bed flotation column (TFC) was designed, and the shear effect of liquid velocity (0.198 m/s, 0.226 m/s, and 0.254 m/s) and static bed height (0.1 m, 0.2 m, and 0.3 m) on the bubbles in the mineralized flow field region was investigated and evaluated for the formation of bubbles by shear in laboratory and semi-industrial experiments. The results show that the increase in filling bed height has a very obvious strengthening effect on the reduction of bubble diameter, and after the filling bed height reaches a certain value, the filling bed height will weaken the effect of apparent gas velocity on bubble diameter. The apparent gas velocity has different influencing effects on bubble diameter, and under conditions of low water velocity, the increase in the apparent gas velocity contributes to the reduction of bubble diameter. The conclusions of this study are expected to optimize the operating parameters of the flotation mineralization process and enrich the study of TFC, which can provide a reference for the design of future TFC studies. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

26 pages, 53412 KiB  
Article
Early Triassic Episode of the Kresty Volcano–Plutonic Complex Formation in the Maymecha-Kotuy Alkaline Province, Polar Siberia: Geochemistry, Petrology and Uranium–Lead Geochronology
Minerals 2024, 14(1), 83; https://doi.org/10.3390/min14010083 - 11 Jan 2024
Viewed by 235
Abstract
The Kresty volcano–plutonic complex (KVPC) is one of the representatives of the alkaline–ultrabasic magmatism in the Maymecha-Kotuy Alkaline Province in Polar Siberia. The geological structure of the KVPC consists of intrusive formations of olivinite–pyroxenite and melilitolite–monticellitolite bodies, a series of rocks that break [...] Read more.
The Kresty volcano–plutonic complex (KVPC) is one of the representatives of the alkaline–ultrabasic magmatism in the Maymecha-Kotuy Alkaline Province in Polar Siberia. The geological structure of the KVPC consists of intrusive formations of olivinite–pyroxenite and melilitolite–monticellitolite bodies, a series of rocks that break through dikes of trachydolerites, syenites, granosyenites, alkaline picrites and lamprophyres. This paper summarizes the results of the authors’ long-term research on the geological structure and features of the material composition of the intrusive magmatic rocks, including geochemistry, mineralogy, distribution of rare earth elements (REE), as well as the results of isotope studies. The multielement composition of the KVPC intrusions demonstrates a complex geodynamic paleoenvironment of the formation as plume nature with signs of subduction and collision. For the ultrabasic series with normal alkalinity from the first phase of the KVPC, a Sm-Nd isochron age yielded an Early Triassic (T1) result of 251 ± 25 Ma. Here, we present U-Pb dating of zircons and perovskite of high-calcium intrusive formations and a dyke complex of alkaline syenites. Thus, for the intrusion of kugdite (according to perovskite), the age determination was 249 ± 4 Ma, and for the crosscutting KVPC dykes of syenites (according to zircon) 249 ± 1 Ma and 252 ± 1 Ma. The age of the most recent dike is almost identical to the age of the main intrusive phases of the KVPC (T1), which corresponds to a larger regional event of the Siberian LIP—251 Ma. According to isotopic Sr-Nd parameters, the main source of KVPC magmas is a PREMA-type material. For dyke varieties, we assume there was an interaction of plume melts with the continental crust. The new age results obtained allow us to further constrain the episodes of alkaline–ultrabasic intrusions in Polar Siberia, taking into account the interaction of mantle plume matter and crustal material. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 13649 KiB  
Article
Genesis of Caoziwa Pb–Zn Deposit in Tengchong Block, SW China: Constraints from Sulfur Isotopic and Trace Elemental Compositions of Sulfides
Minerals 2024, 14(1), 82; https://doi.org/10.3390/min14010082 - 11 Jan 2024
Viewed by 240
Abstract
The Caoziwa Pb–Zn deposit is one of the typical vein-type Pb–Zn deposits in the western part of the Tengchong block. Due to limited research, the genesis of these deposits is unknown. In this study, the sulfur isotopic and trace elemental compositions of sulfides [...] Read more.
The Caoziwa Pb–Zn deposit is one of the typical vein-type Pb–Zn deposits in the western part of the Tengchong block. Due to limited research, the genesis of these deposits is unknown. In this study, the sulfur isotopic and trace elemental compositions of sulfides from the Caoziwa Pb–Zn deposit were analyzed to trace the sources of ore-forming materials, and to reveal the genetic type of this deposit. The results show that abundant Co, Ni, As, and Se, and less Cu, Zn, Ag, Cd, Sn, Sb, Te, Pb, and Bi could enter pyrite by isomorphic substitution. Elemental Mn, Fe, Cd, Co, and Ni could substitute Zn to enter sphalerite, while the contents of Ag, Sn, and Sb are mainly controlled by the Pb-rich inclusions in sphalerite. Elemental Bi, Sb, Cd, Sn, Ag, and Tl mainly enter the galena grains via an isomorphic substitution mechanism of (Bi, Sb)3+ + (Cd, Sn)2+ + (Ag, Tl)+ ↔ 2Pb2+. Both sulfur isotopic compositions and trace elemental compositions indicate that the ore-forming materials and fluids of the Caoziwa Pb–Zn deposit mainly originate from magmatic hydrothermal fluid related to Paleocene granitic magmatism. Combined with the geological facts that some skarnizations developed in the northern part of the ore field near the Paleocene granite, the Caoziwa Pb–Zn deposit is suggested to be a magmatic hydrothermal vein-type deposit that probably belongs to a distal part of a skarn mineralization system developed by the intrusion of Paleocene granitic magmatism in the western part of the Tengchong block. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop