Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Journal = Nanomanufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7375 KiB  
Article
Influence of γ-Irradiation on the Electronic Structure and the Chemical and Mechanical Properties of Poly(hydroxybutyrate-valerate)/Poly(caprolactone) Blends: Insights from Experimental Data and Computational Approaches
Nanomanufacturing 2024, 4(1), 27-44; https://doi.org/10.3390/nanomanufacturing4010002 - 10 Jan 2024
Viewed by 626
Abstract
In this study, we investigated the influence of γ-irradiation (0, 50, and 100 kGy) doses on the chemical and mechanical properties of biodegradable poly(hydroxybutyrate-valerate)/poly(caprolactone) (PHBV/PCL) polymer blends rich in low-molar-mass PCL, which were prepared using a co-rotating twin-screw extruder. In parallel, the density [...] Read more.
In this study, we investigated the influence of γ-irradiation (0, 50, and 100 kGy) doses on the chemical and mechanical properties of biodegradable poly(hydroxybutyrate-valerate)/poly(caprolactone) (PHBV/PCL) polymer blends rich in low-molar-mass PCL, which were prepared using a co-rotating twin-screw extruder. In parallel, the density functional theory (DFT) and the time-dependent DFT (TD-DFT) methods were used together with a model containing four monomer units to provide an insight into the electronic structure, chemical bonds, and spectroscopic (such as Nuclear Magnetic Resonance (NMR) and Ultraviolet-visible (UV-vis)) properties of PHBV and PCL blend phases, which are critical for predicting and designing new materials with desired properties. We found that an increase in γ-irradiation doses caused splitting instead of crosslinks in the polymer chains, which led to evident deformation and an increase in tensile strength at break of 2.0 to 5.7 MPa for the PHBV/PCL blend. Further, this led to a decrease in crystallinity and proved the occurrence of a more favorable interaction between the blend phases. Full article
Show Figures

Graphical abstract

26 pages, 3681 KiB  
Article
New Polymers In Silico Generation and Properties Prediction
Nanomanufacturing 2024, 4(1), 1-26; https://doi.org/10.3390/nanomanufacturing4010001 - 19 Dec 2023
Viewed by 339
Abstract
We present a theoretical approach for the in silico generation of new polymer structures for the systematic search for new materials with advanced properties. It is based on Bicerano’s Regression Model (RM), which uses the structure of the smallest repeating unit (SRU) for [...] Read more.
We present a theoretical approach for the in silico generation of new polymer structures for the systematic search for new materials with advanced properties. It is based on Bicerano’s Regression Model (RM), which uses the structure of the smallest repeating unit (SRU) for fast and adequate prediction of polymer properties. We have developed the programs (a) GenStruc, for generating the new polymer SRUs using the enumeration and Monte Carlo algorithms, and (b) PolyPred, for predicting properties for a given input polymer as well as for multiple structures stored in the database files. The structure database from the original Bicerano publication is used to create databases of backbones and pendant groups. A database of 5,142,153 unique SRUs is generated using the scaffold-based combinatorial method. We show that using only known backbones of the polymer SRU and varying the pendant groups can significantly improve the predicted extreme values of polymer properties. Analysis of the obtained results for the dielectric constant and refractive index shows that the values of the dielectric constant are higher for polyhydrazides than for polyhydroxylamines. The high value predicted for the refractive index of polythiophene and its derivatives is in agreement with the experimental data. Full article
(This article belongs to the Special Issue Nanomanufacturing Empowered with Artificial Intelligence)
Show Figures

Graphical abstract

12 pages, 3752 KiB  
Article
Effects of Variable Viscosity in Unsteady Magnetohydrodynamic Hybrid Nanofluid Flow over Stretching/Shrinking Cylinder with Partial Slip and Stefan Blowing
Nanomanufacturing 2023, 3(4), 434-445; https://doi.org/10.3390/nanomanufacturing3040027 - 30 Nov 2023
Viewed by 605
Abstract
In the manufacturing sector, transport phenomena near the stagnation region are frequent, particularly in the polymer and extrusion processes, which require continuous improvement to raise the process’s quality standards. The aim of this study is to explore the improvement of heat and mass [...] Read more.
In the manufacturing sector, transport phenomena near the stagnation region are frequent, particularly in the polymer and extrusion processes, which require continuous improvement to raise the process’s quality standards. The aim of this study is to explore the improvement of heat and mass transmission using unsteady magnetohydrodynamic (MHD) hybrid nanofluid (HNF) flow over a stretching/shrinking cylinder with variable viscosity and Stefan blowing. The governed equations of heat and mass transfer processes are converted into ordinary differential equations (ODEs) using the appropriate transformations, and the resulting equations are then solved using the MATLAB package bvp4c. With an upsurge in the volume fraction of nanoparticles, the skin friction increases, but the reverse trend is detected with negative values for the unsteadiness constraint. The use of 2D graphs to show how important parameters affect the velocity, temperature, and concentration is thoroughly discussed. There is a discussion of the quantitative findings from the wall shear factor and the heat and mass transfer rates calculated for the stretching/shrinking cases. Full article
Show Figures

Figure 1

18 pages, 12824 KiB  
Article
Nanoimprinted Hierarchical Micro-/Nanostructured Substrates for the Growth of Cardiomyocyte Fibers
Nanomanufacturing 2023, 3(4), 416-433; https://doi.org/10.3390/nanomanufacturing3040026 - 07 Nov 2023
Viewed by 813
Abstract
Investigating the behavior of cardiomyocytes is an important part of drug development. We present a structure and a related nanoimprint-based fabrication method, where the cardiomyocytes form isolated fibers, which is beneficial for drug testing, more closely representing the structure of the cardiomyocytes in [...] Read more.
Investigating the behavior of cardiomyocytes is an important part of drug development. We present a structure and a related nanoimprint-based fabrication method, where the cardiomyocytes form isolated fibers, which is beneficial for drug testing, more closely representing the structure of the cardiomyocytes in vivo. We found that channel structures with walls with a rough top surface stimulate cardiomyocytes to form such fibers, as desired. Nanoimprint lithography is used as a fast and cost-efficient method to fabricate our hierarchically structured cell growth substrates. Full article
(This article belongs to the Special Issue Nanoimprinting and Sustainability)
Show Figures

Figure 1

15 pages, 2593 KiB  
Article
PLLA Nanosheets for Wound Healing: Embedding with Iron-Ion-Containing Nanoparticles
Nanomanufacturing 2023, 3(4), 401-415; https://doi.org/10.3390/nanomanufacturing3040025 - 19 Oct 2023
Viewed by 656
Abstract
This article reports on polymer (PLLA, poly(L-lactic acid)) nanosheets incorporated with Fe-ion nanoparticles, aiming at using the latter nanoparticles as a source to release Fe ions. Such Fe ions should facilitate burn wound healing when such nanosheets are applied as a biomedical tissue [...] Read more.
This article reports on polymer (PLLA, poly(L-lactic acid)) nanosheets incorporated with Fe-ion nanoparticles, aiming at using the latter nanoparticles as a source to release Fe ions. Such Fe ions should facilitate burn wound healing when such nanosheets are applied as a biomedical tissue on skin. Laser ablation in liquid phase was used to produce Fe-containing nanoparticles that, after incorporation into PLLA nanosheets, would release Fe ions upon immersion in water. Unlike most iron-oxide nanostructures, which are poorly soluble, such nanoparticles prepared in chloroform were found to have water solubility, as they were shown by XPS to be based on iron chloride and oxide phases. After incorporation into PLLA nanosheets, the ion-release test demonstrated that Fe ions could be released successfully into water at pH 7.4. Incorporation with two different metal ions (Fe and Zn) was also found to be efficient, as both types of ions were demonstrated to be released simultaneously and with comparable release rates. The results imply that such polymer nanosheets show promise for biomedical applications as potential patches for healing of burns. Full article
(This article belongs to the Special Issue Nano-Objects and Nanomaterials)
Show Figures

Figure 1

20 pages, 4980 KiB  
Article
Electronic Devices Made from Chitin: NAND Gates Made from Chitin Sorbates and Unsaturated Bridging Ligands—Possible Integration Levels and Kinetics of Operation
Nanomanufacturing 2023, 3(4), 381-400; https://doi.org/10.3390/nanomanufacturing3040024 - 12 Oct 2023
Viewed by 631
Abstract
Chitin (usually derived from aq. arthropods like shrimp Pandalus borealis) acts as a potent metal sorbent in both environmental monitoring and retention applications such as wastewater purification or nuclear fuel reprocessing. Given this established (starting in the 1970s) use of chitin and [...] Read more.
Chitin (usually derived from aq. arthropods like shrimp Pandalus borealis) acts as a potent metal sorbent in both environmental monitoring and retention applications such as wastewater purification or nuclear fuel reprocessing. Given this established (starting in the 1970s) use of chitin and the fact that adsorption of metal ions/complexes to chitin does increase the currents observed in metal-centered redox couples by a factor of about 10, it is straightforward to conceive self-organized (by adsorption modified by adding certain ligands bridging M and chitin) surface films which exert electrical information processing by means of inner-sphere redox processes. Preliminary work is shown concerning the influence of ligands—including some possibly acting as inner-sphere-transfer agents, like caffeic acid—on metal ion retention by chitin. Another ligand is reported to enhance current flow into electrodes (i.e., electron injection from some reducing cation). These inner-sphere redox processes, in turn, can be controlled by creating or removing a chain of conjugated double bonds, e.g., by Diels–Alder reactions. Devices admitting corresponding reagents in a controlled manner and appropriate array then act as NAND gates, thus being components capable of performing each kind of classical computation. Applications in environmental analysis and “green” computing for simple purposes like electronic keys are suggested. The empirical basis for these conclusions includes studies on the influences of ligand additions on M adsorption (Mn, Ni, several REEs…) on chitin; some of these bridging ligands, like caffeinate and ferulate, can reversibly react with appropriate dienes. At the employed concentrations, distances among adsorbed metal ions are 1–3 nm, meaning that the charge-flow control takes spacer ligands like carotenoids. Practical setups are pointed to, using evidence from ligand-augmented metal ion–chitin interactions, which might combine oxidizing (Ce) and optically address reducing (Eu) metal ions into a framework for coligand-controlled charge flow. Full article
(This article belongs to the Special Issue Feature Papers for Nanomanufacturing in 2023)
Show Figures

Figure 1

25 pages, 6009 KiB  
Review
Nanocontainers for Energy Storage and Conversion Applications: A Mini-Review
Nanomanufacturing 2023, 3(3), 356-380; https://doi.org/10.3390/nanomanufacturing3030023 - 01 Sep 2023
Viewed by 1057
Abstract
Countries that do not have oil and natural gas but are forced to reduce pollution due to combustion have stimulated and developed new technologies for absorption, storage, and energy creation based on nanotechnology. These new technologies are up-and-coming because they will solve the [...] Read more.
Countries that do not have oil and natural gas but are forced to reduce pollution due to combustion have stimulated and developed new technologies for absorption, storage, and energy creation based on nanotechnology. These new technologies are up-and-coming because they will solve the problem without additional environmental burden. The first technology is based on phase change materials (PCMs) that store the thermal energy produced by the sun and release it when requested. In the context of this article, there is a discussion about some devices that arise from this technology. The second technology is based on light nano-traps that convert solar energy into heat, which is then stored by heating water or other methods. The third practice is to absorb solar energy from nanoparticles, producing electricity. These technologies’ principles will be discussed and analyzed to understand their perspectives. Full article
(This article belongs to the Special Issue Nanostructures for Energy Storage)
Show Figures

Figure 1

9 pages, 9055 KiB  
Article
Low-Cost Shadow Mask Fabrication for Nanoelectronics
Nanomanufacturing 2023, 3(3), 347-355; https://doi.org/10.3390/nanomanufacturing3030022 - 16 Aug 2023
Cited by 1 | Viewed by 1622
Abstract
We present two approaches for fabricating shadow masks for the evaporation of electrodes onto nanomaterials. In the first one, we combine the use of a commercial fiber laser engraving system with readily available aluminum foil. This method is suitable for fabricating shadow masks [...] Read more.
We present two approaches for fabricating shadow masks for the evaporation of electrodes onto nanomaterials. In the first one, we combine the use of a commercial fiber laser engraving system with readily available aluminum foil. This method is suitable for fabricating shadow masks with line widths of 50 µm and minimum feature separation of 20 µm, and using it to create masks with complex patterns is very straightforward. In the second approach, we use a commercially available vinyl cutting machine to pattern a vinyl stencil mask, and we use a glass fiber to define the separation between the electrodes. With this approach, we achieve well-defined electrodes separated by 15 µm, but this technique is less versatile in creating complex masks as compared with the laser-based one. We demonstrate the potential of these techniques by fabricating field-effect transistor devices based on MoS2. Our approach is a cost-effective and easily accessible method for fabricating shadow masks with high resolution and accuracy, making it accessible to a wider range of laboratories. Full article
Show Figures

Figure 1

21 pages, 2427 KiB  
Review
Self-Healing Cement: A Review
Nanomanufacturing 2023, 3(3), 326-346; https://doi.org/10.3390/nanomanufacturing3030021 - 01 Aug 2023
Viewed by 1843
Abstract
The self-healing of cementitious materials can be achieved by precipitation of calcium carbonate through the enzymatic hydrolysis of urea. When a crack appears in cement, the damage can be repaired by allowing bacteria to encounter the water seeping through the crack. This forms [...] Read more.
The self-healing of cementitious materials can be achieved by precipitation of calcium carbonate through the enzymatic hydrolysis of urea. When a crack appears in cement, the damage can be repaired by allowing bacteria to encounter the water seeping through the crack. This forms a calcium carbonate, which heals the cracks. This occurs because microorganisms begin metabolizing and precipitating the mineral, healing the damage caused by the crack. Then, bacteria are incorporated into various containers, which release microorganisms by crushing, leading to the precipitation of calcium carbonate. In addition, this paper references the superabsorbent polymers (SAP) used for self-healing and hybrid organic-inorganic core–shell SAPs, a recently developed, state-of-the-art self-healing technology for cementitious materials. Full article
(This article belongs to the Special Issue Self-Healing Materials and Their Applications)
Show Figures

Figure 1

11 pages, 3888 KiB  
Article
Effect of Textured Glasses on Conversion Efficiency in Dye-Sensitized Solar Cells
Nanomanufacturing 2023, 3(3), 315-325; https://doi.org/10.3390/nanomanufacturing3030020 - 05 Jul 2023
Viewed by 791
Abstract
In this paper, three types of optical textured glass substrates were prepared at the glass/transparent conductive oxide interface using polydimethylsiloxane nanoimprint lithography to increase the conversion efficiency of dye-sensitized solar cells (DSSCs). There were three types of textures: nanotexture, microtexture, and micro/nano double [...] Read more.
In this paper, three types of optical textured glass substrates were prepared at the glass/transparent conductive oxide interface using polydimethylsiloxane nanoimprint lithography to increase the conversion efficiency of dye-sensitized solar cells (DSSCs). There were three types of textures: nanotexture, microtexture, and micro/nano double texture. In terms of optical characteristics, it was confirmed that the reflectance of all of the textured glass substrates was lower than that of flat glass in the mean value of the 400–800 nm wavelength band. Further, the diffuse transmittance was higher than that of flat glass for all of the textured glass substrates, and the D-Tx was particularly high. DSSCs were fabricated using N749 and N719 dyes; their size was 6 mm2. The conversion efficiencies of the N749 DSSCs were improved by 11% for the N-Tx (η of 2.41%) and 10% for the D-Tx (η of 2.38%) compared with flat glass (η of 2.17%) DSSCs. On the other hand, the M-Tx did not improve it. The conversion efficiencies of the N719 DSSCs with textured glass substrates were improved by 7.5% for the M-Tx (η of 2.74%), 18% for the N-Tx (η of 3.01%), and 26% for the D-Tx (η of 3.22%) compared with flat glass (η of 2.55%) DSSCs. Full article
Show Figures

Figure 1

22 pages, 4903 KiB  
Article
Thermodynamic Theory of Phase Separation in Nonstoichiometric Si Oxide Films Induced by High-Temperature Anneals
Nanomanufacturing 2023, 3(3), 293-314; https://doi.org/10.3390/nanomanufacturing3030019 - 03 Jul 2023
Cited by 1 | Viewed by 828
Abstract
High-temperature anneals of nonstoichiometric Si oxide (SiOx, x < 2) films induce phase separation in them, with the formation of composite structures containing amorphous or crystalline Si nanoinclusions embedded in the Si oxide matrix. In this paper, a thermodynamic theory of [...] Read more.
High-temperature anneals of nonstoichiometric Si oxide (SiOx, x < 2) films induce phase separation in them, with the formation of composite structures containing amorphous or crystalline Si nanoinclusions embedded in the Si oxide matrix. In this paper, a thermodynamic theory of the phase separation process in SiOx films is proposed. The theory is based on the thermodynamic models addressing various aspects of this process which we previously developed. A review of these models is provided, including: (i) the derivation of the expressions for the Gibbs free energy of Si oxides and Si/Si oxide systems, (ii) the identification of the phase separation driving forces and counteracting mechanisms, and (iii) the crystallization behavior of amorphous Si nanoinclusions in the Si oxide matrix. A general description of the phase separation process is presented. A number of characteristic features of the nano-Si/Si oxide composites formed by SiOx decomposition, such as the local separation of Si nanoinclusions surrounded by the Si oxide matrix; the dependence of the amount of separated Si and the equilibrium matrix composition on the initial Si oxide stoichiometry and annealing temperature; and the correlation of the presence of amorphous and crystalline Si nanoinclusions with the presence of SiOx (x < 2) and SiO2 phase, respectively, in the Si oxide matrix, are explained. Full article
(This article belongs to the Special Issue Feature Papers for Nanomanufacturing in 2023)
Show Figures

Graphical abstract

12 pages, 2943 KiB  
Article
Electrostatic Charging of Fine Powders and Assessment of Charge Polarity Using an Inductive Charge Sensor
Nanomanufacturing 2023, 3(3), 281-292; https://doi.org/10.3390/nanomanufacturing3030018 - 28 Jun 2023
Cited by 1 | Viewed by 1574
Abstract
Electrostatic charging of powders becomes important, when particles become smaller, especially for fine powders at micron or sub-micron size. Charging of powders causes strong particle adhesion and consequently difficulties in processes such as blending or mixing, and sieving, etc. Not only does the [...] Read more.
Electrostatic charging of powders becomes important, when particles become smaller, especially for fine powders at micron or sub-micron size. Charging of powders causes strong particle adhesion and consequently difficulties in processes such as blending or mixing, and sieving, etc. Not only does the charge of powders influence the process and the quality of the products, but also the discharge creates risks of dust explosion. Assessing powder charge and the hazards in manufacturing can be difficult. One of the major challenges is to evaluate the charge levels and polarity in the powders but this requires a significant number of tests to detect charge tendency and distributions in bulk materials, which is time-consuming. In this paper, electrostatic charging of powders in material handling processes and the associated hazards are briefly reviewed. For an assessment, the challenges for sensing electrostatic charges of particulate solids, particularly for fine powders, are discussed. It was revealed that sensing the charge polarity for representative samples of powders can be the main challenge because of the difficulty in separation of the charged particles. The inductive charge sensor showed great potential to measure charge levels and polarity distributions in powders. Experimental trials for several fine powders showed that the inductive charge sensor can be used for rapidly assessing chargeability and charge polarity distribution of powders. Full article
(This article belongs to the Special Issue Feature Papers for Nanomanufacturing in 2023)
Show Figures

Figure 1

18 pages, 4895 KiB  
Review
Superferromagnetic Sensors
Nanomanufacturing 2023, 3(3), 263-280; https://doi.org/10.3390/nanomanufacturing3030017 - 24 Jun 2023
Cited by 1 | Viewed by 828
Abstract
The strong ferromagnetic nanoparticles are analyzed within the band structure-based shell model, accounting for discrete quantum levels of conducting electrons. As is demonstrated, such an approach allows for the description of the observed superparamagnetic features of these nanocrystals. Assemblies of such superparamagnets incorporated [...] Read more.
The strong ferromagnetic nanoparticles are analyzed within the band structure-based shell model, accounting for discrete quantum levels of conducting electrons. As is demonstrated, such an approach allows for the description of the observed superparamagnetic features of these nanocrystals. Assemblies of such superparamagnets incorporated into nonmagnetic insulators, semiconductors, or metallic substrates are shown to display ferromagnetic coupling, resulting in a superferromagnetic ordering at sufficiently dense packing. Properties of such metamaterials are investigated by making use of the randomly jumping interacting moments model, accounting for quantum fluctuations induced by the discrete electronic levels and disorder. Employing the mean-field treatment for such superparamagnetic assemblies, we obtain the magnetic state equation, indicating conditions for an unstable behavior. Respectively, magnetic spinodal regions and critical points occur on the magnetic phase diagram of such ensembles. The respective magnetodynamics exhibit jerky behavior expressed as erratic stochastic jumps in magnetic induction curves. At critical points, magnetodynamics displays the features of self-organized criticality. Analyses of magnetic noise correlations are proposed as model-independent analytical tools employed in order to specify, quantify, and analyze the magnetic structure and origin of superferromagnetism. We discuss some results for a sensor-mode application of superferromagnetic reactivity associated with spatially local external fields, e.g., the detection of magnetic particles. The transport of electric charge carriers between superparamagnetic particles is considered tunneling and Landau-level state dynamics. The tunneling magnetoresistance is predicted to grow noticeably with decreasing nanomagnet size. The giant magnetoresistance is determined by the ratio of the respective times of flight and relaxation and can be significant at room temperature. Favorable designs for superferromagnetic systems with sensor implications are revealed. Full article
Show Figures

Figure 1

15 pages, 3689 KiB  
Article
Comparison between the Nature and Activity of Silver Nanoparticles Produced by Active and Inactive Fungal Biomass Forms on Cervical Cancer Cells
Nanomanufacturing 2023, 3(2), 248-262; https://doi.org/10.3390/nanomanufacturing3020016 - 09 Jun 2023
Cited by 1 | Viewed by 932
Abstract
Silver nanoparticles (SNPs) can be produced by active and inactive forms of biomass, but their properties have not been compared. Recent research is attempting to reveal their differences in shape, size, amount, antibacterial activity, cytotoxicity, and apoptosis induction. The biomass of Fusarium oxysporum [...] Read more.
Silver nanoparticles (SNPs) can be produced by active and inactive forms of biomass, but their properties have not been compared. Recent research is attempting to reveal their differences in shape, size, amount, antibacterial activity, cytotoxicity, and apoptosis induction. The biomass of Fusarium oxysporum was divided into four groups and pretreated in the following devices: room temperature (RT) and refrigerator (for preparation of active biomass forms), autoclave, and hot air oven (for preparation of inactive biomass forms). Samples were floated in ddH2O, and SNPs were produced after the addition of 0.1699 g/L AgNO3 in the ddH2O solution. SNP production was confirmed by visible spectrophotometry, transmission electron microscopy (TEM) and X-ray diffraction (XRD). SNPs were washed, and their concentration was determined by measuring atomic emission spectroscopy with inductively coupled plasma (ICP-OES). For antibacterial activity, the plate-well diffusion method was used. MTT and Annexin V-FITC/propidium iodide assays were used for cytotoxicity and apoptosis induction, respectively. The maximum absorbance peaks for SNPs pretreated in RT, refrigerator, autoclave, and hot air oven were 404, 402, 412, and 412 nm, respectively. The SNPs produced were almost the same shape and size, and the XRD results confirmed the presence of SNPs in all samples. Due to the differences in the type of bacterial strains used, the SNPs produced showed some differences in their antibacterial activity. The MTT assay showed that the amounts of SNPs in their IC50 dose based on the results of ICP-OES were 0.40, 0.45, 0.66, and 0.44 ppm for the samples pretreated in the hot air oven, autoclave, and refrigerator, and RT, respectively. The apoptosis induction results showed that the biologically engineered SNPs induced more apoptosis (about 34.25%) and less necrosis (about 13.25%). In conclusion, the type and activity of SNPs produced by the active and inactive forms of fungal biomass did not change. Therefore, use of the inactive form of biomass in the future to avoid environmental contamination is reccommended. Full article
Show Figures

Figure 1

15 pages, 1815 KiB  
Review
Mixed Copolymer Micelles for Nanomedicine
Nanomanufacturing 2023, 3(2), 233-247; https://doi.org/10.3390/nanomanufacturing3020015 - 26 May 2023
Viewed by 1293
Abstract
Mixed micelles from copolymers in aqueous media have emerged as a valuable tool for producing functional polymer nanostructures with applications in nanomedicine, including drug delivery and bioimaging. In this review, we discuss the basics of mixed copolymer micelles’ design, structure, and physicochemical properties. [...] Read more.
Mixed micelles from copolymers in aqueous media have emerged as a valuable tool for producing functional polymer nanostructures with applications in nanomedicine, including drug delivery and bioimaging. In this review, we discuss the basics of mixed copolymer micelles’ design, structure, and physicochemical properties. We also focus on their utilization in biomedical applications using examples from recent literature. Full article
(This article belongs to the Special Issue Featured Reviews in Nanomanufacturing)
Show Figures

Graphical abstract

Back to TopTop