Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Journal = GeoHazards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9640 KiB  
Article
The Lac Fallère Area as an Example of the Interplay between Deep-Seated Gravitational Slope Deformation and Glacial Shaping (Aosta Valley, NW Italy)
GeoHazards 2024, 5(1), 38-63; https://doi.org/10.3390/geohazards5010003 - 11 Jan 2024
Viewed by 283
Abstract
The Lac Fallère area in the upper Clusellaz Valley (tributary of the middle Aosta Valley) is shaped in micaschist and gneiss (Mont Fort Unit, Middle Penninic) and in calcschist and marble (Aouilletta Unit, Combin Zone). Lac Fallère exhibits an elongated shape and is [...] Read more.
The Lac Fallère area in the upper Clusellaz Valley (tributary of the middle Aosta Valley) is shaped in micaschist and gneiss (Mont Fort Unit, Middle Penninic) and in calcschist and marble (Aouilletta Unit, Combin Zone). Lac Fallère exhibits an elongated shape and is hosted in a WSW–ENE-trending depression, according to the slope direction. This lake also shows a semi-submerged WSW–ENE rocky ridge that longitudinally divides the lake. This evidence, in addition to the extremely fractured rocks, indicates a wide, deep-seated gravitational slope deformation (DSGSD), even if this area is not yet included within the regional landslide inventory of the Aosta Valley Region. The Lac Fallère area also shows reliefs involved in glacial erosion (roches moutonnée), an extensive cover of subglacial sediments, and many moraines essentially referred to as Lateglacial. The DSGSD evolution in a glacial environment produced, as observed in other areas, effects on the facies of Quaternary sediments and the formation of a lot of wide moraines. Glacial slope sectors and lateral moraines displaced by minor scarps and counterscarps, and glaciers using trenches forming several arched moraines, suggest an interplay between glacial and gravitational processes, which share part of their evolution history. Full article
Show Figures

Figure 1

16 pages, 5386 KiB  
Article
Statistics on Typhoon Intensity and Rice Damage in Vietnam and the Philippines
GeoHazards 2024, 5(1), 22-37; https://doi.org/10.3390/geohazards5010002 - 11 Jan 2024
Viewed by 199
Abstract
Typhoons are destructive multi-hazard events. To assess the relationship between typhoon intensity and agricultural loss, there is a need for accurate and standardized information on loss and damage, which is currently lacking. To address this, a database for Vietnam and the Philippines was [...] Read more.
Typhoons are destructive multi-hazard events. To assess the relationship between typhoon intensity and agricultural loss, there is a need for accurate and standardized information on loss and damage, which is currently lacking. To address this, a database for Vietnam and the Philippines was created to provide aggregated information on the magnitude of rice damage and to highlight the rice-growing areas which were prone to being damaged by typhoons. Our study period was from 1970 to 2018, and we focused on Vietnam and the Philippines as these two countries experience frequent and intense typhoons. As different crops respond differently to wind and rain, we limit our research to a single crop. In this study, we focused on rice as it is a major staple food in Southeast Asia, and rice fields were often damaged by typhoons in the two countries. Of the 829 typhoon events recorded, only 15% of the events resulted in rice damage. The average area of rice damaged per typhoon event ranged from 42,407 ha in Vietnam to 83,571 ha in the Philippines. Meanwhile, the average production loss per typhoon event ranged from 190,227 metric tonnes in the Philippines to 539,150 metric tonnes in Vietnam. The monetary value of rice crops lost was only reported in the Philippines, and this amounted to an average of US$ 42 million per typhoon event. There was a weak relationship between landfall wind speed and the three indicators of rice damage, which suggests that rice damage was not primarily due to strong winds. Our results showed that the rice fields in the coastal provinces of Vietnam and the northern parts of the Philippines were more vulnerable to being damaged by typhoons. Full article
Show Figures

Figure 1

21 pages, 8195 KiB  
Article
Assessment of Soil Loss from Land Cover Changes in the Nan River Basin, Thailand
GeoHazards 2024, 5(1), 1-21; https://doi.org/10.3390/geohazards5010001 - 04 Jan 2024
Viewed by 531
Abstract
This study investigates soil loss erosion dynamics in the Nan River Basin, Thailand, focusing on the impact of land cover changes. Utilizing the Universal Soil Loss Equation (USLE) model, key factors, including rainfall erosivity, soil erodibility, topography, and land cover, are analyzed for [...] Read more.
This study investigates soil loss erosion dynamics in the Nan River Basin, Thailand, focusing on the impact of land cover changes. Utilizing the Universal Soil Loss Equation (USLE) model, key factors, including rainfall erosivity, soil erodibility, topography, and land cover, are analyzed for the years 2001 to 2019. The findings reveal a substantial increase in human-induced soil erosion, emphasizing the pressing need for effective mitigation measures. Severity classification demonstrates shifting patterns, prompting targeted conservation strategies. The examination of land cover changes indicates significant alterations in the satellite image (MODIS), particularly an increase in Deciduous forest (~13.21%), Agriculture (~0.18%), and Paddy (~0.43%), and decrease in Evergreen Forest (~13.73%) and Water (~0.12%) cover types. Deciduous forest and Agriculture, associated with the highest soil loss rates, underscore the environmental consequences of specific land use practices. Notably, the increase in Deciduous forest and Agriculture significantly contributes to changes in soil loss rates, revealing the interconnectedness of land cover changes and soil erosion in ~18.05% and ~8.67%, respectively. This study contributes valuable insights for informed land management decisions and lays a foundation for future research in soil erosion dynamics. Additionally, the percentage increase in Agriculture corresponds to a notable rise in soil loss rates, underscoring the urgency for sustainable land use practices. Full article
Show Figures

Figure 1

28 pages, 9662 KiB  
Article
Marginal Distribution Fitting Method for Modelling Flood Extremes on a River Network
GeoHazards 2023, 4(4), 526-553; https://doi.org/10.3390/geohazards4040030 - 16 Dec 2023
Viewed by 521
Abstract
This study utilized a max-stable process (MSP) model with a dependence structure defined via a non-Euclidean distance metric, with the goal of modelling extreme flood data on a river network. The dataset was composed of mean daily discharge observations from 22 United States [...] Read more.
This study utilized a max-stable process (MSP) model with a dependence structure defined via a non-Euclidean distance metric, with the goal of modelling extreme flood data on a river network. The dataset was composed of mean daily discharge observations from 22 United States Geological Survey streamflow gaging stations for river basins in Missouri and Arkansas. The analysis included the application of the elastic-net penalty to automatically build spatially varying trend surfaces to model the marginal distributions. The dependence model accounted for the river distance between hydrologically connected gaging sites and the hydrologic distance, defined as the Euclidean distance between the centers of site’s associated drainage areas, for all stations. Modelling the marginal distributions and spatial dependence among the extremes are two key components for spatially modelling extremes. Among the 16 covariates evaluated for marginal fitting, 7 were selected to spatially model the generalized extreme value (GEV) location parameter (for each gaging station’s contributing drainage basin, its outlet elevation, centroid x coordinate, centroid elevation, area, average basin width, elevation range, and median land surface slope). The three covariates selected for the GEV scale parameter included the area, average basin width, and median land surface slope. The GEV shape parameter was assumed to be constant throughout the entire study area. Comparisons of estimates obtained from the spatial covariate model with their corresponding “at-site” estimates resulted in computed values of 0.95, 0.95, 0.94 and 0.85, 0.84, 0.90 for the coefficient of determination, Nash–Sutcliffe efficiency, and Kling–Gupta efficiency for the GEV location and scale parameters, respectively. Brown–Resnick MSP models were fit to independent multivariate events extracted from a set of common discharge data, transformed to unit Fréchet margins while considering different permutations of the non-Euclidean dependence model. Each of the fitted model’s log-likelihood values indicated improved fits when using hydrologic distance rather than Euclidean distance. They also demonstrated that accounting for flow-connected dependence and anisotropy further improved model fit. In this study, the results from both parts were illustrative; however, further research with larger datasets and more heterogeneous systems is recommended. Full article
Show Figures

Figure 1

11 pages, 3620 KiB  
Article
Near Real-Time Detection and Moment Tensor Inversion of the 11 May 2022, Dharchula Earthquake
GeoHazards 2023, 4(4), 515-525; https://doi.org/10.3390/geohazards4040029 - 14 Dec 2023
Viewed by 501
Abstract
On 11 May 2022, an earthquake of Mw 5.2 occurred in the Dharchula region of Uttarakhand Himalayas, India. The Uttarakhand State Earthquake Early Warning System (UEEWS) detected and transmitted the warning within 11.61 s from the origin time, taking only 4.26 s [...] Read more.
On 11 May 2022, an earthquake of Mw 5.2 occurred in the Dharchula region of Uttarakhand Himalayas, India. The Uttarakhand State Earthquake Early Warning System (UEEWS) detected and transmitted the warning within 11.61 s from the origin time, taking only 4.26 s for processing, location, and magnitude estimation and warning dissemination. The complete analysis was performed using three seconds of waveforms. Using the initial earthquake parameters provided by the UEEWS, moment tensor inversion was performed using the broadband seismometers network installed in northern India. The moment tensor (MT) inversion was performed for the event using both the body waves and the surface waves. The first motion polarity was used along with waveform data to enhance the solution’s stability. This paper discusses the importance of real-time event detection and efforts towards real-time MT source inversion of earthquakes in the Uttarakhand Himalayas. Relocation of two past earthquakes near Dharchula is also undertaken in this study. The outcome of this study provides insights into mitigating seismic hazards, understanding earthquake source mechanisms, and enhancing knowledge of local fault structures. Full article
(This article belongs to the Special Issue Active Faulting and Seismicity)
Show Figures

Figure 1

18 pages, 4932 KiB  
Article
Extreme Value Analysis of Tide Gauge Record at the Port of Busan, South Korea
GeoHazards 2023, 4(4), 497-514; https://doi.org/10.3390/geohazards4040028 - 04 Dec 2023
Viewed by 683
Abstract
This article conducts an extreme value analysis (EVA) of hourly tide gauge measurements at Busan, South Korea, from 1960 onwards to understand the influence of typhoon-driven surges and predicted tides that super-elevate ocean still water levels (SWLs) at Busan. The impact of the [...] Read more.
This article conducts an extreme value analysis (EVA) of hourly tide gauge measurements at Busan, South Korea, from 1960 onwards to understand the influence of typhoon-driven surges and predicted tides that super-elevate ocean still water levels (SWLs) at Busan. The impact of the 2003 super-typhoon “Maemi” dominates the records, super-elevating the SWL above mean sea level (MSL) by 1403 mm, equating to a recurrence interval of 98 years, eclipsing the second highest measured extreme in August 1960, with a return level of around 16 years. The sensitivity testing of the random timing of high tides and typhoon storm surges reveals several near misses in recent history, where water levels attained at the Busan tide gauge could have surpassed the records set during the “Maemi” event. This paper explores the omnipresent increasing risk of continuously increasing sea level coupled with oceanic inundation associated with extreme phenomena. By integrating sea level projections (IPCC AR6), the result of the EVA provides important resources for coastal planning and engineering design purposes at Busan. Full article
Show Figures

Figure 1

22 pages, 4746 KiB  
Article
Climate Change Impacts on Shallow Landslide Events and on the Performance of the Regional Shallow Landslide Early Warning System of Piemonte (Northwestern Italy)
GeoHazards 2023, 4(4), 475-496; https://doi.org/10.3390/geohazards4040027 - 04 Dec 2023
Viewed by 758
Abstract
Shallow landslides are one of the most dangerous gravitational phenomena. They are responsible for more than 50% of causalities due to landslides in northwestern Italy in the last century. The aim of the research study presented here is focused on understanding if and [...] Read more.
Shallow landslides are one of the most dangerous gravitational phenomena. They are responsible for more than 50% of causalities due to landslides in northwestern Italy in the last century. The aim of the research study presented here is focused on understanding if and how climate change influences the occurrence and behavior of this landslide type. A total of 120 widespread shallow landslide events have been analyzed from 1960 to 2019, taking into account the spatial and time distribution in association with related rainfall historical data elaborated by the Optimal Interpolation (OI) model. Results underline that shallow landslide events’ number (aggregated per five-year intervals) is characterized by a weak trend consisting of a slight increase in the Alps and a more pronounced decrease in the hilly and Apennines environments. In addition, the trend of the annual accumulated rainfall average shows a weak drop in the winter season of about 9 mm in ten years. Moreover, the rainy days have generally decreased over the hills and Apennines, while in the Alps, only in the summer season, with a decreasing rate of about 1.5 days every ten years. The rainfall trends are in accordance with those of shallow landslide events, pointing out the close and direct dependence of the shallow landslide events on the rainfall regime variations. The results obtained were also used to validate the robustness of the performance of the Regional Shallow Landslide Early Warning System adopted in Piemonte over the investigated period, confirming the effectiveness of the trigger thresholds used for the entire historical series and for different geographical areas. Full article
Show Figures

Figure 1

22 pages, 8214 KiB  
Article
Evaluating the Impact of Engineering Works in Megatidal Areas Using Satellite Images—Case of the Mont-Saint-Michel Bay, France
GeoHazards 2023, 4(4), 453-474; https://doi.org/10.3390/geohazards4040026 - 10 Nov 2023
Viewed by 736
Abstract
The Mont-Saint-Michel is known worldwide for its unique combination of the natural site and the Medieval abbey at the top of the rocky islet. But the Mont is also located within an estuarine complex, which is considerably silting up. For two decades, large-scale [...] Read more.
The Mont-Saint-Michel is known worldwide for its unique combination of the natural site and the Medieval abbey at the top of the rocky islet. But the Mont is also located within an estuarine complex, which is considerably silting up. For two decades, large-scale works were planned to prevent the Mont from being surrounded by the expanding salt meadows. The construction of a new dam over the Couesnon River, the digging of two new channels, and the destruction of the causeway were the main operations carried out between 2007 and 2015. The remote sensing approach is fully suitable for evaluating the real impact of the engineering project, particularly the expected large-scale hydrosedimentary effects of reestablishing the maritime landscape around the Mont. The migration of the different channels and the erosion-progradation balance of the vegetation through space and time are the main features to study. Between 2007 and 2023, the erosion of the salt meadows was significant to the south-west of the Mont but more limited to the south-east. During the same period, the sedimentation considerably increased to the north-east of the Bay, which seems to be facing the same silting-up problem. At this stage, the remote-sensing survey indicates mixed results for the engineering project. Full article
Show Figures

Figure 1

16 pages, 7349 KiB  
Article
Assessment of a Machine Learning Algorithm Using Web Images for Flood Detection and Water Level Estimates
GeoHazards 2023, 4(4), 437-452; https://doi.org/10.3390/geohazards4040025 - 06 Nov 2023
Viewed by 995
Abstract
Improving our skills to monitor flooding events is crucial for protecting populations and infrastructures and for planning mitigation and adaptation strategies. Despite recent advancements, hydrological models and remote sensing tools are not always useful for mapping flooding at the required spatial and temporal [...] Read more.
Improving our skills to monitor flooding events is crucial for protecting populations and infrastructures and for planning mitigation and adaptation strategies. Despite recent advancements, hydrological models and remote sensing tools are not always useful for mapping flooding at the required spatial and temporal resolutions because of intrinsic model limitations and remote sensing data. In this regard, images collected by web cameras can be used to provide estimates of water levels during flooding or the presence/absence of water within a scene. Here, we report the results of an assessment of an algorithm which uses web camera images to estimate water levels and detect the presence of water during flooding events. The core of the algorithm is based on a combination of deep convolutional neural networks (D-CNNs) and image segmentation. We assessed the outputs of the algorithm in two ways: first, we compared estimates of time series of water levels obtained from the algorithm with those measured by collocated tide gauges and second, we performed a qualitative assessment of the algorithm to detect the presence of flooding from images obtained from the web under different illumination and weather conditions and with low spatial or spectral resolutions. The comparison between measured and camera-estimated water levels pointed to a coefficient of determination R2 of 0.84–0.87, a maximum absolute bias of 2.44–3.04 cm and a slope ranging between 1.089 and 1.103 in the two cases here considered. Our analysis of the histogram of the differences between gauge-measured and camera-estimated water levels indicated mean differences of −1.18 cm and 5.35 cm for the two gauges, respectively, with standard deviations ranging between 4.94 and 12.03 cm. Our analysis of the performances of the algorithm to detect water from images obtained from the web and containing scenes of areas before and after a flooding event shows that the accuracy of the algorithm exceeded ~90%, with the Intersection over Union (IoU) and the boundary F1 score (both used to assess the output of segmentation analysis) exceeding ~80% (IoU) and 70% (BF1). Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction)
Show Figures

Figure 1

16 pages, 5085 KiB  
Article
Induced Seismicity Hazard Assessment for a Potential CO2 Storage Site in the Southern San Joaquin Basin, CA
GeoHazards 2023, 4(4), 421-436; https://doi.org/10.3390/geohazards4040024 - 01 Nov 2023
Viewed by 933
Abstract
California’s Central Valley offers vast opportunities for CO2 storage in deep saline aquifers. We conducted an induced seismicity hazard assessment for a potential injection site in the southern San Joaquin Basin for 18 years of injection at 0.68 MtCO2/yr and [...] Read more.
California’s Central Valley offers vast opportunities for CO2 storage in deep saline aquifers. We conducted an induced seismicity hazard assessment for a potential injection site in the southern San Joaquin Basin for 18 years of injection at 0.68 MtCO2/yr and 100 years of monitoring. We mapped stress, faults, and seismicity in a 30 km radius around the site to build a geomechanical model and resolve the stresses on major faults. From a 3D hydromechanical simulation of the CO2 plume, we calculated the change in pressure over time on these faults and determined the conditions for safe injection. Lacking any subsurface imaging, we also conducted a probabilistic fault slip analysis using numerous random distributions of faults and a range of geomechanical parameters. Our results show that the change in probability of fault slip can be minimized by controlling the size, migration, and magnitude of the pressure plume. We also constructed a seismic catalog for the last 20 years around the site and characterized the natural patterns of seismicity. We use these results to establish criteria for evaluating potential-induced events during the storage period and to develop a traffic light response system. This study represents a first-order procedure to evaluate the seismic hazards presented by CO2 storage and incorporate uncertainties in hydrological and geomechanical parameters. Full article
(This article belongs to the Special Issue Active Faulting and Seismicity)
Show Figures

Figure 1

15 pages, 70096 KiB  
Article
Influence of the 2020 Seismic Hazard Update on Residential Losses in Greater Montreal, Canada
GeoHazards 2023, 4(4), 406-420; https://doi.org/10.3390/geohazards4040023 - 22 Oct 2023
Viewed by 1019
Abstract
Greater Montreal is situated in a region with moderate seismic activity and rests on soft ground deposits from the ancient Champlain Sea, as well as more recent alluvial deposits from the Saint Lawrence River. These deposits have the potential to amplify seismic waves, [...] Read more.
Greater Montreal is situated in a region with moderate seismic activity and rests on soft ground deposits from the ancient Champlain Sea, as well as more recent alluvial deposits from the Saint Lawrence River. These deposits have the potential to amplify seismic waves, as demonstrated by past strong, and recent weak, earthquakes. Studies based on the 2015 National Seismic Hazard Model (SHM5) had estimated losses to residential buildings at 2% of their value for an event with a return period of 2475 years. In 2020, the seismic hazard model was updated (SHM6), resulting in more severe hazards for eastern Canada. This paper aims to quantify the impact of these changes on losses to residential buildings in Greater Montreal. Our exposure database includes population and buildings at the scale of dissemination areas (500–1000 inhabitants). Buildings are classified by occupancy and construction type and grouped into three building code levels based on year of construction. The value of buildings is obtained from property-valuation rolls and the content value is derived from insurance data. Damage and losses are calculated using Hazus software developed for FEMA. Losses are shown to be 53% higher than the SHM5 estimates. Full article
(This article belongs to the Collection Geohazard Characterization, Modeling, and Risk Assessment)
Show Figures

Figure 1

26 pages, 2081 KiB  
Review
Evaluating Post-Fire Erosion and Flood Protection Techniques: A Narrative Review of Applications
GeoHazards 2023, 4(4), 380-405; https://doi.org/10.3390/geohazards4040022 - 10 Oct 2023
Cited by 1 | Viewed by 1678
Abstract
Wildfires affect and change the burned sites’ condition, functionality, and ecosystem services. Altered hydrologic processes, such as runoff, increased streamflows, and sediment transport, are only a few examples resulting from burned soils, vegetation, and land cover. Such areas are flood-prone and face risks [...] Read more.
Wildfires affect and change the burned sites’ condition, functionality, and ecosystem services. Altered hydrologic processes, such as runoff, increased streamflows, and sediment transport, are only a few examples resulting from burned soils, vegetation, and land cover. Such areas are flood-prone and face risks of extreme peak flows, reduced infiltration, water pollution affecting habitats, and hydromorphological changes. In this study, we present the different post-fire erosion and flood protection treatments that have been developed to avoid and mitigate the consequences and risks mentioned above. We categorize them into Land, Channel, Barrier, and Road treatments and analyze their types, such as cover-based methods, barriers, mulching, in-channel treatments, such as check dams, seeding, or even chemical treatments. Examples of how such treatments were used in real cases are provided, commenting on their results in flood and erosion protection. We found that cover changes were more effective than barriers, as they provided an immediate ground-cover increase in both Mediterranean and US sites. We explore the factors that play a role in their effectiveness, including storm duration and intensity, topography and slopes, land cover and uses, treatment implementation-installation, as well as fire-related factors such as burn severity. These factors have different effects on different treatments, so we further discuss the suitability of each one depending on the site’s and treatment’s characteristics. The outcomes of this work are expected to improve the understanding of the practical aspects of these treatments, providing for the first time a synthesis of the available knowledge on the multiple complex factors that can determine their efficiency. Full article
Show Figures

Figure 1

13 pages, 1890 KiB  
Article
Is Sea Level Rise a Known Threat? A Discussion Based on an Online Survey
GeoHazards 2023, 4(4), 367-379; https://doi.org/10.3390/geohazards4040021 - 03 Oct 2023
Viewed by 1210
Abstract
Since the last century, global warming has been triggering sea level rise at an unprecedented rate. In the worst case climate scenario, sea level could rise by up to 1.1 m above the current level, causing coastal inundation and cascading effects, thus affecting [...] Read more.
Since the last century, global warming has been triggering sea level rise at an unprecedented rate. In the worst case climate scenario, sea level could rise by up to 1.1 m above the current level, causing coastal inundation and cascading effects, thus affecting about one billion people around the world. Though widespread and threatening, the phenomenon is not well known to citizens as it is often overshadowed by other effects of global warming. Here, we show the results of an online survey carried out in 2020–2021 to understand the level of citizens’ knowledge on sea level rise including causes, effects, exacerbation in response to land subsidence and best practice towards mitigation and adaptation. The most important result of the survey is that citizens believe that it is up to governments to take action to cope with the effects of rising sea levels or mitigate the rise itself. This occurs despite the survey showing that they actually know what individuals can do and that a failure to act poses a threat to society. Gaps and preconceptions need to be eradicated by strengthening the collaboration between scientists and schools to improve knowledge, empowering our society. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction)
Show Figures

Figure 1

17 pages, 3076 KiB  
Article
Flooding and Waste Disposal Practices of Urban Residents in Nigeria
GeoHazards 2023, 4(4), 350-366; https://doi.org/10.3390/geohazards4040020 - 26 Sep 2023
Viewed by 1298
Abstract
The rising incidence of flooding is a cause for global concern. Flooding is caused by both natural and human factors. In Nigeria, flooding has been attributed chiefly to human factors, such as poor waste disposal practices and management. Despite this known link, no [...] Read more.
The rising incidence of flooding is a cause for global concern. Flooding is caused by both natural and human factors. In Nigeria, flooding has been attributed chiefly to human factors, such as poor waste disposal practices and management. Despite this known link, no empirical study is known to have engaged with urban residents to understand their actual waste disposal practices and ascertain their knowledge of the connection of their waste disposal practices to the flooding they are increasingly experiencing. This work fills this gap via an in-depth engagement with residents and experts on their waste disposal practices in the flood-prone city of Port Harcourt via a mixed-methods case study. Questionnaire surveys and qualitative interviews served as the primary data collection tools. The study confirms the poor waste practices of residents and provides empirical data on the prevalence of various forms of waste disposal practices. This provides key information that can guide the needed change in waste practices to eliminate this known flood driver in the pursuit of sustainable flood risk management. This is pertinent as waste management is one of the areas where citizens have agency to act. A behavioural shift is needed in this regard and must be encouraged via targeted public sensitization. Having local vanguards champion waste management behavioural turn is also recommended. The relevant authorities are encouraged to adopt a more sustainable approach to waste management by ensuring there are waste services and putting in place adequate disincentives to deter offenders. Full article
Show Figures

Figure 1

22 pages, 4693 KiB  
Article
Traditional Nomadism Offers Adaptive Capacity to Northern Mongolian Geohazards
GeoHazards 2023, 4(3), 328-349; https://doi.org/10.3390/geohazards4030019 - 11 Aug 2023
Viewed by 1024
Abstract
Mongolia’s northernmost province, Khövsgöl Aimag, famous for its massive Lake Khövsgöl set among the mountainous steppe, taiga, and tundra forests, increasingly attracts both domestic and international tourists. Before the COVID-19 pandemic, Mongolia received over 500,000 tourists annually. The aimag is also home to [...] Read more.
Mongolia’s northernmost province, Khövsgöl Aimag, famous for its massive Lake Khövsgöl set among the mountainous steppe, taiga, and tundra forests, increasingly attracts both domestic and international tourists. Before the COVID-19 pandemic, Mongolia received over 500,000 tourists annually. The aimag is also home to Indigenous, nomadic Dukha reindeer herders and semi-nomadic Darkhad cattle herders. Using a multidisciplinary approach, this study uses an analytical hierarchy process to map areas in Khövsgöl Aimag, where the infrastructure, including buildings, dwellings, formal and informal roads, and pastureland, is subject to geohazards. The hazards of interest to this mapping analysis include mass wasting, flooding, and permafrost thawing, which threaten roads, pastures, houses, and other community infrastructure in Khövsgöl Aimag. Based on the integrated infrastructure risk map, an estimated 23% of the aimag is at high to very high risk for localized geohazards. After a discussion of the results informed by the interviews, mobile ethnographies, and local and national land use policies, we postulate that communities exercising more traditional nomadic lifestyles with higher mobility are more resilient to these primarily localized geohazards. Full article
Show Figures

Figure 1

Back to TopTop