Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Journal = Forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3861 KiB  
Article
Predictive Analytics of Air Temperature in Alaskan Permafrost Terrain Leveraging Two-Level Signal Decomposition and Deep Learning
Forecasting 2024, 6(1), 55-80; https://doi.org/10.3390/forecast6010004 - 09 Jan 2024
Viewed by 302
Abstract
Local weather forecasts in the Arctic outside of settlements are challenging due to the dearth of ground-level observation stations and high computational costs. During winter, these forecasts are critical to help prepare for potentially hazardous weather conditions, while in spring, these forecasts may [...] Read more.
Local weather forecasts in the Arctic outside of settlements are challenging due to the dearth of ground-level observation stations and high computational costs. During winter, these forecasts are critical to help prepare for potentially hazardous weather conditions, while in spring, these forecasts may be used to determine flood risk during annual snow melt. To this end, a hybrid VMD-WT-InceptionTime model is proposed for multi-horizon multivariate forecasting of remote-region temperatures in Alaska over short-term horizons (the next seven days). First, the Spearman correlation coefficient is employed to analyze the relationship between each input variable and the forecast target temperature. The most output-correlated input sequences are decomposed using variational mode decomposition (VMD) and, ultimately, wavelet transform (WT) to extract time-frequency patterns intrinsic in the raw inputs. The resulting sequences are fed into a deep InceptionTime model for short-term forecasting. This hybrid technique has been developed and evaluated using 35+ years of data from three locations in Alaska. Different experiments and performance benchmarks are conducted using deep learning models (e.g., Time Series Transformers, LSTM, MiniRocket), and statistical and conventional machine learning baselines (e.g., GBDT, SVR, ARIMA). All forecasting performances are assessed using four metrics: the root mean squared error, the mean absolute percentage error, the coefficient of determination, and the mean directional accuracy. Superior forecasting performance is achieved consistently using the proposed hybrid technique. Full article
(This article belongs to the Section Weather and Forecasting)
Show Figures

Figure 1

19 pages, 1019 KiB  
Article
Bootstrapping State-Space Models: Distribution-Free Estimation in View of Prediction and Forecasting
Forecasting 2024, 6(1), 36-54; https://doi.org/10.3390/forecast6010003 - 27 Dec 2023
Viewed by 481
Abstract
Linear models, seasonal autoregressive integrated moving average (SARIMA) models, and state-space models have been widely adopted to model and forecast economic data. While modeling using linear models and SARIMA models is well established in the literature, modeling using state-space models has been extended [...] Read more.
Linear models, seasonal autoregressive integrated moving average (SARIMA) models, and state-space models have been widely adopted to model and forecast economic data. While modeling using linear models and SARIMA models is well established in the literature, modeling using state-space models has been extended with the proposal of alternative estimation methods to the maximum likelihood. However, maximum likelihood estimation assumes, as a rule, that the errors are normal. This paper suggests implementing the bootstrap methodology, utilizing the model’s innovation representation, to derive distribution-free estimates—both point and interval—of the parameters in the time-varying state-space model. Additionally, it aims to estimate the standard errors of these parameters through the bootstrap methodology. The simulation study demonstrated that the distribution-free estimation, coupled with the bootstrap methodology, yields point forecasts with a lower mean-squared error, particularly for small time series or when dealing with smaller values of the autoregressive parameter in the state equation of state-space models. In this context, distribution-free estimation with the bootstrap methodology serves as an alternative to maximum likelihood estimation, eliminating the need for distributional assumptions. The application of this methodology to real data showed that it performed well when compared to the usual maximum likelihood estimation and even produced prediction intervals with a similar amplitude for the same level of confidence without any distributional assumptions about the errors. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2023)
Show Figures

Figure 1

18 pages, 3543 KiB  
Article
Improvement on Forecasting of Propagation of the COVID-19 Pandemic through Combining Oscillations in ARIMA Models
Forecasting 2024, 6(1), 18-35; https://doi.org/10.3390/forecast6010002 - 26 Dec 2023
Viewed by 509
Abstract
Daily data on COVID-19 infections and deaths tend to possess weekly oscillations. The purpose of this work is to forecast COVID-19 data with partially cyclical fluctuations. A partially periodic oscillating ARIMA model is suggested to enhance the predictive performance. The model, optimized for [...] Read more.
Daily data on COVID-19 infections and deaths tend to possess weekly oscillations. The purpose of this work is to forecast COVID-19 data with partially cyclical fluctuations. A partially periodic oscillating ARIMA model is suggested to enhance the predictive performance. The model, optimized for improved prediction, characterizes and forecasts COVID-19 time series data marked by weekly oscillations. Parameter estimation and out-of-sample forecasting are carried out with data on daily COVID-19 infections and deaths between January 2021 and October 2022 in the USA, Germany, and Brazil, in which the COVID-19 data exhibit the strongest weekly cycle behaviors. Prediction accuracy measures, such as RMSE, MAE, and HMAE, are evaluated, and 95% prediction intervals are constructed. It was found that predictions of daily COVID-19 data can be improved considerably: a maximum of 55–65% in RMSE, 58–70% in MAE, and 46–60% in HMAE, compared to the existing models. This study provides a useful predictive model for the COVID-19 pandemic, and can help institutions manage their healthcare systems with more accurate statistical information. Full article
(This article belongs to the Section Environmental Forecasting)
Show Figures

Figure 1

17 pages, 3466 KiB  
Article
Advancements in Downscaling Global Climate Model Temperature Data in Southeast Asia: A Machine Learning Approach
Forecasting 2024, 6(1), 1-17; https://doi.org/10.3390/forecast6010001 - 20 Dec 2023
Viewed by 555
Abstract
Southeast Asia (SEA), known for its diverse climate and broad coastal regions, is particularly vulnerable to the effects of climate change. The purpose of this study is to enhance the spatial resolution of temperature projections over Southeast Asia (SEA) by employing three machine [...] Read more.
Southeast Asia (SEA), known for its diverse climate and broad coastal regions, is particularly vulnerable to the effects of climate change. The purpose of this study is to enhance the spatial resolution of temperature projections over Southeast Asia (SEA) by employing three machine learning methods: Random Forest (RF), Gradient Boosting Machine (GBM), and Decision Tree (DT). Preliminary analyses of raw General Circulation Model (GCM) data between the years 1990 and 2014 have shown an underestimation of temperatures, which is mostly due to the insufficient amount of precision in its spatial resolution. Our findings show that the RF method has a significant concordance with high-resolution observational data, as evidenced by a low mean squared error (MSE) value of 2.78 and a high Pearson correlation coefficient of 0.94. The GBM method, while effective, had a broader range of predictions, indicated by a mean squared error (MSE) score of 5.90. The Decision Tree (DT) method performed the best, with the lowest mean squared error (MSE) value of 2.43, which closely matched the actual data. The first General Circulation Model (GCM) data, on the other hand, exhibited significant forecast errors, as evidenced by a mean squared error (MSE) value of 7.84. The promise of machine learning methods, notably the Random Forest (RF) and Decision Tree (DT) algorithms, in improving temperature predictions for the Southeast Asian region is highlighted in the present study. Full article
(This article belongs to the Section Weather and Forecasting)
Show Figures

Figure 1

13 pages, 3587 KiB  
Article
Decompose and Conquer: Time Series Forecasting with Multiseasonal Trend Decomposition Using Loess
Forecasting 2023, 5(4), 684-696; https://doi.org/10.3390/forecast5040037 - 12 Dec 2023
Viewed by 828
Abstract
Over the past few years, there has been growing attention to the Long-Term Time Series Forecasting task and solving its inherent challenges like the non-stationarity of the underlying distribution. Notably, most successful models in this area use decomposition during preprocessing. Yet, much of [...] Read more.
Over the past few years, there has been growing attention to the Long-Term Time Series Forecasting task and solving its inherent challenges like the non-stationarity of the underlying distribution. Notably, most successful models in this area use decomposition during preprocessing. Yet, much of the recent research has focused on intricate forecasting techniques, often overlooking the critical role of decomposition, which we believe can significantly enhance the performance. Another overlooked aspect is the presence of multiseasonal components in many time series datasets. This study introduced a novel forecasting model that prioritizes multiseasonal trend decomposition, followed by a simple, yet effective forecasting approach. We submit that the right decomposition is paramount. The experimental results from both real-world and synthetic data underscore the efficacy of the proposed model, Decompose&Conquer, for all benchmarks with a great margin, around a 30–50% improvement in the error. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2023)
Show Figures

Figure 1

32 pages, 2144 KiB  
Article
Macroeconomic Predictions Using Payments Data and Machine Learning
Forecasting 2023, 5(4), 652-683; https://doi.org/10.3390/forecast5040036 - 27 Nov 2023
Viewed by 1121
Abstract
This paper assesses the usefulness of comprehensive payments data for macroeconomic predictions in Canada. Specifically, we evaluate which type of payments data are useful, when they are useful, why they are useful, and whether machine learning (ML) models enhance their predictive value. We [...] Read more.
This paper assesses the usefulness of comprehensive payments data for macroeconomic predictions in Canada. Specifically, we evaluate which type of payments data are useful, when they are useful, why they are useful, and whether machine learning (ML) models enhance their predictive value. We find payments data with a factor model can help improve accuracy up to 25% in predicting GDP, retail, and wholesale sales; and nonlinear ML models can further improve the accuracy up to 20%. Furthermore, we find the retail payments data are more useful than the data from the wholesale system; and they add more value during crisis and at the nowcasting horizon due to the timeliness. The contribution of the payments data and ML models is small and linear during low and normal economic growth periods. However, their contribution is large, asymmetrical, and nonlinear during crises such as COVID-19. Moreover, we propose a cross-validation approach to mitigate overfitting and use tools to overcome interpretability in the ML models to improve their effectiveness for policy use. Full article
(This article belongs to the Special Issue Forecasting Financial Time Series during Turbulent Times)
Show Figures

Figure 1

23 pages, 3144 KiB  
Article
Exploring the Role of Online Courses in COVID-19 Crisis Management in the Supply Chain Sector—Forecasting Using Fuzzy Cognitive Map (FCM) Models
Forecasting 2023, 5(4), 629-651; https://doi.org/10.3390/forecast5040035 - 20 Nov 2023
Viewed by 829
Abstract
Globalization has gotten increasingly intense in recent years, necessitating accurate forecasting. Traditional supply chains have evolved into transnational networks that grow with time, becoming more vulnerable. These dangers have the potential to disrupt the flow of goods or several planned actions. For this [...] Read more.
Globalization has gotten increasingly intense in recent years, necessitating accurate forecasting. Traditional supply chains have evolved into transnational networks that grow with time, becoming more vulnerable. These dangers have the potential to disrupt the flow of goods or several planned actions. For this reason, increased resilience against various types of risks that threaten the viability of an organization is of major importance. One of the ways to determine the magnitude of the risk an organization runs is to measure how popular it is with the buying public. Although risk is impossible to eliminate, effective forecasting and supply chain risk management can help businesses identify, assess, and reduce it. As a result, good supply chain risk management, including forecasting, is critical for every company. To measure the popularity of an organization, there are some discrete values (bounce rate, global ranking, organic traffic, non-branded traffic, branded traffic), known as KPIs. Below are some hypotheses that affect these values and a model for the way in which these values interact with each other. As a result of the research, it is clear how important it is for an organization to increase its popularity, to increase promotion in the shareholder community, and to be in a position to be able to predict its future requirements. Full article
Show Figures

Figure 1

13 pages, 726 KiB  
Article
Forecasting the Traffic Flow by Using ARIMA and LSTM Models: Case of Muhima Junction
Forecasting 2023, 5(4), 616-628; https://doi.org/10.3390/forecast5040034 - 14 Nov 2023
Viewed by 1044
Abstract
Traffic operation efficiency is greatly impacted by the increase in travel demand and the increase in vehicle ownership. The continued increase in traffic demand has rendered the importance of controlling traffic, especially at intersections. In general, the inefficiency of traffic scheduling leads to [...] Read more.
Traffic operation efficiency is greatly impacted by the increase in travel demand and the increase in vehicle ownership. The continued increase in traffic demand has rendered the importance of controlling traffic, especially at intersections. In general, the inefficiency of traffic scheduling leads to traffic congestion, resulting in a rise in fuel consumption, exhaust emissions, and poor quality of service. Various methods for time series forecasting have been proposed for adaptive and remote traffic control. The prediction of traffic has attracted profound attention for improving the reliability and efficiency of traffic flow scheduling while reducing congestion. Therefore, in this work, we studied the problem of the current traffic situation at Muhima Junction one of the busiest junctions in Kigali city. Future traffic rates were forecasted by employing long short-term memory (LSTM) and autoregressive integrated moving average (ARIMA) models, respectively. Both the models’ performance criteria for adequacy were the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). The results revealed that LSTM is the best-fitting model for monthly traffic flow prediction. Within this analysis, we proposed an adaptive traffic flow prediction that builds on the features of vehicle-to-infrastructure communication and the Internet of Things (IoT) to control traffic while enhancing the quality of service at the junctions. The real-time actuation of traffic-responsive signal control can be assured when real-time traffic-based signal actuation is reliable. Full article
Show Figures

Figure 1

16 pages, 2389 KiB  
Article
An Extended Analysis of Temperature Prediction in Italy: From Sub-Seasonal to Seasonal Timescales
Forecasting 2023, 5(4), 600-615; https://doi.org/10.3390/forecast5040033 - 13 Oct 2023
Viewed by 1035
Abstract
Earth system predictions, from sub-seasonal to seasonal timescales, remain a challenging task, and the representation of predictability sources on seasonal timescales is a complex work. Nonetheless, advances in technology and science have been making continuous progress in seasonal forecasting. In a previous paper, [...] Read more.
Earth system predictions, from sub-seasonal to seasonal timescales, remain a challenging task, and the representation of predictability sources on seasonal timescales is a complex work. Nonetheless, advances in technology and science have been making continuous progress in seasonal forecasting. In a previous paper, a performance for temperature prediction by a modelling system named e-kmf® was carried out in comparison with observations and climatology for a year of data; a low level of predictability in the sub-seasonal range, particularly in the second month, was observed over the Italian peninsula. Therefore, in this study, we focus our investigations specifically on the performance between the fifth and the eighth week of temperature forecasts over six years of simulations (2012–2018) to investigate the capability of the weather model to better reproduce the behavior of temperatures in the second month of the forecast. Although some differences in seasons are present, results have globally shown how temperature predictions have the potential to be quite skillful, with an average skill score of about 68%, with climatology used as reference; additionally, an overall anomaly correlation coefficient equal to 0.51 was shown, providing useful information for applications in planning, sales, and supply of natural energy resources. Full article
(This article belongs to the Section Weather and Forecasting)
Show Figures

Figure 1

24 pages, 1329 KiB  
Review
Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview
Forecasting 2023, 5(3), 576-599; https://doi.org/10.3390/forecast5030032 - 14 Sep 2023
Cited by 1 | Viewed by 1239
Abstract
In recent years, there has been a noticeable shift towards electric mobility and an increasing emphasis on integrating renewable energy sources. Consequently, batteries and their management have been prominent in this context. A vital aspect of the BMS revolves around accurately determining the [...] Read more.
In recent years, there has been a noticeable shift towards electric mobility and an increasing emphasis on integrating renewable energy sources. Consequently, batteries and their management have been prominent in this context. A vital aspect of the BMS revolves around accurately determining the battery pack’s SOC. Notably, the advent of advanced microcontrollers and the availability of extensive datasets have contributed to the growing popularity and practicality of data-driven methodologies. This study examines the developments in SOC estimation over the past half-decade, explicitly focusing on data-driven estimation techniques. It comprehensively assesses the performance of each algorithm, considering the type of battery and various operational conditions. Additionally, intricate details concerning the models’ hyperparameters, including the number of layers, type of optimiser, and neuron, are provided for thorough examination. Most of the models analysed in the paper demonstrate strong performance, with both the MAE and RMSE for the estimation of SOC hovering around 2% or even lower. Full article
Show Figures

Figure 1

26 pages, 10217 KiB  
Article
Searching for Promisingly Trained Artificial Neural Networks
Forecasting 2023, 5(3), 550-575; https://doi.org/10.3390/forecast5030031 - 04 Sep 2023
Viewed by 952
Abstract
Assessing the training process of artificial neural networks (ANNs) is vital for enhancing their performance and broadening their applicability. This paper employs the Monte Carlo simulation (MCS) technique, integrated with a stopping criterion, to construct the probability distribution of the learning error of [...] Read more.
Assessing the training process of artificial neural networks (ANNs) is vital for enhancing their performance and broadening their applicability. This paper employs the Monte Carlo simulation (MCS) technique, integrated with a stopping criterion, to construct the probability distribution of the learning error of an ANN designed for short-term forecasting. The training and validation processes were conducted multiple times, each time considering a unique random starting point, and the subsequent forecasting error was calculated one step ahead. From this, we ascertained the probability of having obtained all the local optima. Our extensive computational analysis involved training a shallow feedforward neural network (FFNN) using wind power and load demand data from the transmission systems of the Netherlands and Germany. Furthermore, the analysis was expanded to include wind speed prediction using a long short-term memory (LSTM) network at a site in Spain. The improvement gained from the FFNN, which has a high probability of being the global optimum, ranges from 0.7% to 8.6%, depending on the forecasting variable. This solution outperforms the persistent model by between 5.5% and 20.3%. For wind speed predictions using an LSTM, the improvement over an average-trained network stands at 9.5%, and is 6% superior to the persistent approach. These outcomes suggest that the advantages of exhaustive search vary based on the problem being analyzed and the type of network in use. The MCS method we implemented, which estimates the probability of identifying all local optima, can act as a foundational step for other techniques like Bayesian model selection, which assumes that the global optimum is encompassed within the available hypotheses. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

14 pages, 264 KiB  
Article
Large Language Models: Their Success and Impact
Forecasting 2023, 5(3), 536-549; https://doi.org/10.3390/forecast5030030 - 25 Aug 2023
Cited by 1 | Viewed by 3911
Abstract
ChatGPT, a state-of-the-art large language model (LLM), is revolutionizing the AI field by exhibiting humanlike skills in a range of tasks that include understanding and answering natural language questions, translating languages, writing code, passing professional exams, and even composing poetry, among its other [...] Read more.
ChatGPT, a state-of-the-art large language model (LLM), is revolutionizing the AI field by exhibiting humanlike skills in a range of tasks that include understanding and answering natural language questions, translating languages, writing code, passing professional exams, and even composing poetry, among its other abilities. ChatGPT has gained an immense popularity since its launch, amassing 100 million active monthly users in just two months, thereby establishing itself as the fastest-growing consumer application to date. This paper discusses the reasons for its success as well as the future prospects of similar large language models (LLMs), with an emphasis on their potential impact on forecasting, a specialized and domain-specific field. This is achieved by first comparing the correctness of the answers of the standard ChatGPT and a custom one, trained using published papers from a subfield of forecasting where the answers to the questions asked are known, allowing us to determine their correctness compared to those of the two ChatGPT versions. Then, we also compare the responses of the two versions on how judgmental adjustments to the statistical/ML forecasts should be applied by firms to improve their accuracy. The paper concludes by considering the future of LLMs and their impact on all aspects of our life and work, as well as on the field of forecasting specifically. Finally, the conclusion section is generated by ChatGPT, which was provided with a condensed version of this paper and asked to write a four-paragraph conclusion. Full article
Show Figures

Figure 1

14 pages, 441 KiB  
Article
Shrinking the Variance in Experts’ “Classical” Weights Used in Expert Judgment Aggregation
Forecasting 2023, 5(3), 522-535; https://doi.org/10.3390/forecast5030029 - 23 Aug 2023
Viewed by 857
Abstract
Mathematical aggregation of probabilistic expert judgments often involves weighted linear combinations of experts’ elicited probability distributions of uncertain quantities. Experts’ weights are commonly derived from calibration experiments based on the experts’ performance scores, where performance is evaluated in terms of the calibration and [...] Read more.
Mathematical aggregation of probabilistic expert judgments often involves weighted linear combinations of experts’ elicited probability distributions of uncertain quantities. Experts’ weights are commonly derived from calibration experiments based on the experts’ performance scores, where performance is evaluated in terms of the calibration and the informativeness of the elicited distributions. This is referred to as Cooke’s method, or the classical model (CM), for aggregating probabilistic expert judgments. The performance scores are derived from experiments, so they are uncertain and, therefore, can be represented by random variables. As a consequence, the experts’ weights are also random variables. We focus on addressing the underlying uncertainty when calculating experts’ weights to be used in a mathematical aggregation of expert elicited distributions. This paper investigates the potential of applying an empirical Bayes development of the James–Stein shrinkage estimation technique on the CM’s weights to derive shrinkage weights with reduced mean squared errors. We analyze 51 professional CM expert elicitation studies. We investigate the differences between the classical and the (new) shrinkage CM weights and the benefits of using the new weights. In theory, the outcome of a probabilistic model using the shrinkage weights should be better than that obtained when using the classical weights because shrinkage estimation techniques reduce the mean squared errors of estimators in general. In particular, the empirical Bayes shrinkage method used here reduces the assigned weights for those experts with larger variances in the corresponding sampling distributions of weights in the experiment. We measure improvement of the aggregated judgments in a cross-validation setting using two studies that can afford such an approach. Contrary to expectations, the results are inconclusive. However, in practice, we can use the proposed shrinkage weights to increase the reliability of derived weights when only small-sized experiments are available. We demonstrate the latter on 49 post-2006 professional CM expert elicitation studies. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2023)
Show Figures

Figure 1

23 pages, 603 KiB  
Article
A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes
Forecasting 2023, 5(3), 499-521; https://doi.org/10.3390/forecast5030028 - 19 Jul 2023
Cited by 1 | Viewed by 1868
Abstract
This paper proposes a new hybrid model to forecast electricity market prices up to four days ahead. The components of the proposed model are combined in two dimensions. First, on the “vertical” dimension, long short-term memory (LSTM) neural networks and extreme gradient boosting [...] Read more.
This paper proposes a new hybrid model to forecast electricity market prices up to four days ahead. The components of the proposed model are combined in two dimensions. First, on the “vertical” dimension, long short-term memory (LSTM) neural networks and extreme gradient boosting (XGBoost) models are stacked up to produce supplementary price forecasts. The final forecasts are then picked depending on how the predictions compare to a price spike threshold. On the “horizontal” dimension, five models are designed to extend the forecasting horizon to four days. This is an important requirement to make forecasts useful for market participants who trade energy and ancillary services multiple days ahead. The horizontally cascaded models take advantage of the availability of specific public data for each forecasting horizon. To enhance the forecasting capability of the model in dealing with price spikes, we deploy a previously unexplored input in the proposed methodology. That is, to use the recent variations in the output power of thermal units as an indicator of unplanned outages or shift in the supply stack. The proposed method is tested using data from Alberta’s electricity market, which is known for its volatility and price spikes. An economic application of the developed forecasting model is also carried out to demonstrate how several market players in the Alberta electricity market can benefit from the proposed multi-day ahead price forecasting model. The numerical results demonstrate that the proposed methodology is effective in enhancing forecasting accuracy and price spike detection. Full article
(This article belongs to the Collection Energy Forecasting)
Show Figures

Figure 1

12 pages, 322 KiB  
Article
On the Disagreement of Forecasting Model Selection Criteria
Forecasting 2023, 5(2), 487-498; https://doi.org/10.3390/forecast5020027 - 20 Jun 2023
Viewed by 1206
Abstract
Forecasters have been using various criteria to select the most appropriate model from a pool of candidate models. This includes measurements on the in-sample accuracy of the models, information criteria, and cross-validation, among others. Although the latter two options are generally preferred due [...] Read more.
Forecasters have been using various criteria to select the most appropriate model from a pool of candidate models. This includes measurements on the in-sample accuracy of the models, information criteria, and cross-validation, among others. Although the latter two options are generally preferred due to their ability to tackle overfitting, in univariate time-series forecasting settings, limited work has been conducted to confirm their superiority. In this study, we compared such popular criteria for the case of the exponential smoothing family of models using a large data set of real series. Our results suggest that there is significant disagreement between the suggestions of the examined criteria and that, depending on the approach used, models of different complexity may be favored, with possible negative effects on the forecasting accuracy. Moreover, we find that simple in-sample error measures can effectively select forecasting models, especially when focused on the most recent observations in the series. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2023)
Show Figures

Figure 1

Back to TopTop