Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Journal = Gases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
3 pages, 185 KiB  
Editorial
Helium: Sources, Applications, Supply, and Demand
Gases 2023, 3(4), 181-183; https://doi.org/10.3390/gases3040013 - 06 Dec 2023
Viewed by 429
Abstract
Helium is an inert gas with no color or odor [...] Full article
16 pages, 3884 KiB  
Article
Greenhouse Gas Conversion into Hydrocarbons and Oxygenates Using Low Temperature Barrier Discharge Plasma Combined with Zeolite Catalysts
Gases 2023, 3(4), 165-180; https://doi.org/10.3390/gases3040012 - 05 Dec 2023
Viewed by 512
Abstract
Global warming occurs as a result of the build-up of greenhouse gases in the atmosphere, causing an increase in Earth’s average temperature. Two major greenhouse gases (CH4 and CO2) can be simultaneously converted into value-added chemicals and fuels thereby decreasing [...] Read more.
Global warming occurs as a result of the build-up of greenhouse gases in the atmosphere, causing an increase in Earth’s average temperature. Two major greenhouse gases (CH4 and CO2) can be simultaneously converted into value-added chemicals and fuels thereby decreasing their negative impact on the climate. In the present work, we used a plasma-catalytic approach for the conversion of methane and carbon dioxide into syngas, hydrocarbons, and oxygenates. For this purpose, CuCe zeolite-containing catalysts were prepared and characterized (low-temperature N2 adsorption, XRF, XRD, CO2-TPD, NH3-TPD, TPR). The process of carbon dioxide methane reforming was conducted in a dielectric barrier discharge under atmospheric pressure and at low temperature (under 120 °C). It was found that under the studied conditions, the major byproducts of CH4 reforming are CO, H2, and C2H6 with the additional formation of methanol and acetone. The application of a ZSM-12 based catalyst was beneficial as the CH4 conversion increased and the total concentration of liquid products was the highest, which is related to the acidic properties of the catalyst. Full article
(This article belongs to the Section Gas Emissions)
Show Figures

Figure 1

7 pages, 238 KiB  
Opinion
Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
Gases 2023, 3(4), 158-164; https://doi.org/10.3390/gases3040011 - 17 Nov 2023
Viewed by 686
Abstract
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants, leading to net-zero carbon emissions by 2050. Hydrogen [...] Read more.
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants, leading to net-zero carbon emissions by 2050. Hydrogen (H2), fuel cells particularly proton exchange membrane fuel cell (PEMFC), and ammonia (NH3) are screened out to be the feasible marine gaseous alternative fuels. Green hydrogen can reduce the highest carbon emission, which might amount to 100% among those 5 types of hydrogen. The main hurdles to the development of H2 as a marine alternative fuel include its robust and energy-consuming cryogenic storage system, highly explosive characteristics, economic transportation issues, etc. It is anticipated that fossil fuel used for 35% of vehicles such as marine vessels, automobiles, or airplanes will be replaced with hydrogen fuel in Europe by 2040. Combustible NH3 can be either burned directly or blended with H2 or CH4 to form fuel mixtures. In addition, ammonia is an excellent H2 carrier to facilitate its production, storage, transportation, and usage. The replacement of promising alternative fuels can move the marine industry toward decarbonization emissions by 2050. Full article
14 pages, 6985 KiB  
Article
Influence of Hydrogen on the Performance and Emissions Characteristics of a Spark Ignition Ammonia Direct Injection Engine
Gases 2023, 3(4), 144-157; https://doi.org/10.3390/gases3040010 - 16 Oct 2023
Viewed by 735
Abstract
Because ammonia is easier to store and transport over long distances than hydrogen, it is a promising research direction as a potential carrier for hydrogen. However, its low ignition and combustion rates pose challenges for running conventional ignition engines solely on ammonia fuel [...] Read more.
Because ammonia is easier to store and transport over long distances than hydrogen, it is a promising research direction as a potential carrier for hydrogen. However, its low ignition and combustion rates pose challenges for running conventional ignition engines solely on ammonia fuel over the entire operational range. In this study, we attempted to identify a stable engine combustion zone using a high-pressure direct injection of ammonia fuel into a 2.5 L spark ignition engine and examined the potential for extending the operational range by adding hydrogen. As it is difficult to secure combustion stability in a low-temperature atmosphere, the experiment was conducted in a sufficiently-warmed atmosphere (90 ± 2.5 °C), and the combustion, emission, and efficiency results under each operating condition were experimentally compared. At 1500 rpm, the addition of 10% hydrogen resulted in a notable 20.26% surge in the maximum torque, reaching 263.5 Nm, in contrast with the case where only ammonia fuel was used. Furthermore, combustion stability was ensured at a torque of 140 Nm by reducing the fuel and air flow rates. Full article
(This article belongs to the Special Issue Gas Emissions from Combustion Sources)
Show Figures

Figure 1

8 pages, 2041 KiB  
Communication
Effect of Mixing Technique on Physico-Chemical Characteristics of Blended Membranes for Gas Separation
Gases 2023, 3(4), 136-143; https://doi.org/10.3390/gases3040009 - 26 Sep 2023
Viewed by 672
Abstract
Polymer blending has attracted considerable attention because of its ability to overcome the permeability–selectivity trade-off in gas separation applications. In this study, polysulfone (PSU)-modified cellulose acetate (CA) membranes were prepared using N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF) using a dry–wet phase inversion technique. [...] Read more.
Polymer blending has attracted considerable attention because of its ability to overcome the permeability–selectivity trade-off in gas separation applications. In this study, polysulfone (PSU)-modified cellulose acetate (CA) membranes were prepared using N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF) using a dry–wet phase inversion technique. The membranes were characterized using scanning electron microscopy (SEM) for morphological analysis, thermogravimetric analysis (TGA) for thermal stability, and Fourier transform infrared spectroscopy (FTIR) to identify the chemical changes on the surface of the membranes. Our analyses confirmed that the mixing method (the route chosen for preparing the casting solution for the blended membranes) significantly influences the morphological and thermal properties of the resultant membranes. The blended membranes exhibited a transition from a finger-like pore structure to a dense substructure in the presence of macrovoids. Similarly, thermal analysis confirmed the improved residual weight (up to 7%) and higher onset degradation temperature (up to 10 °C) of the synthesized membranes. Finally, spectral analysis confirmed that the blending of both polymers was physical only. Full article
(This article belongs to the Special Issue Membrane Processes for Decarbonisation)
Show Figures

Graphical abstract

24 pages, 3857 KiB  
Article
Experimental Study and Thermodynamic Analysis of Carbon Dioxide Adsorption onto Activated Carbons Prepared from Biowaste Raw Materials
Gases 2023, 3(3), 112-135; https://doi.org/10.3390/gases3030008 - 14 Aug 2023
Viewed by 864
Abstract
Nutshells are regarded as cost-effective and abundant raw materials for producing activated carbons (ACs) for CO2 capture, storage, and utilization. The effects of carbonization temperature and thermochemical KOH activation conditions on the porous structure as a BET surface, micropore volume, micropore width, [...] Read more.
Nutshells are regarded as cost-effective and abundant raw materials for producing activated carbons (ACs) for CO2 capture, storage, and utilization. The effects of carbonization temperature and thermochemical KOH activation conditions on the porous structure as a BET surface, micropore volume, micropore width, and pore size distribution of ACs prepared from walnut (WNS) and hazelnut (HNS) shells were investigated. As a result, one-step carbonization at 900/800 °C and thermochemical KOH activation with a char/KOH mass ratio of 1:2/1:3 were found to be optimal for preparing ACs from WNS/HNS: WNS-AC-3 and HNS-AC-2, respectively. The textural properties of the WNS/HNS chars and ACs were characterized by low-temperature nitrogen vapor adsorption, XRD, and SEM methods. Dubinin’s theory of volume filling of micropores was used to evaluate the microporosity parameters and to calculate the CO2 adsorption equilibrium over the sub- and supercritical temperatures from 216.4 to 393 K at a pressure up to 10 MPa. The CO2 capture capacities of WNS- and HNS-derived adsorbents reached 5.9/4.1 and 5.4/3.9 mmol/g at 273/293 K under 0.1 MPa pressure, respectively. A discrepancy between the total and delivery volumetric adsorption capacities of the adsorbents was attributed to the strong binding of CO2 molecules with the adsorption sites, which were mainly narrow micropores with a high adsorption potential. The high initial differential heats of CO2 adsorption onto ACs of ~32 kJ/mol confirmed this proposal. The behaviors of thermodynamic functions (enthalpy and entropy) of the adsorption systems were attributed to changes in the state of adsorbed CO2 molecules determined by a balance between attractive and repulsive CO2–CO2 and CO2–AC interactions during the adsorption process. Thus, the chosen route for preparing ACs from the nutshells made it possible to prepare efficient carbon adsorbents with a relatively high CO2 adsorption performance due to a substantial volume of micropores with a size in the range of 0.6–0.7 nm. Full article
Show Figures

Figure 1

6 pages, 930 KiB  
Communication
A New Ignition Source for the Determination of Safety Characteristics of Gases
Gases 2023, 3(3), 106-111; https://doi.org/10.3390/gases3030007 - 03 Jul 2023
Viewed by 659
Abstract
Safety characteristics are used to keep processes, including flammable gases, vapors, and combustible dusts, safe. In the standards for the determination of safety characteristics of gases and vapors, the induction spark is commonly used. However, classic transformers are hard to obtain, and replacement [...] Read more.
Safety characteristics are used to keep processes, including flammable gases, vapors, and combustible dusts, safe. In the standards for the determination of safety characteristics of gases and vapors, the induction spark is commonly used. However, classic transformers are hard to obtain, and replacement with new electronic transformers is not explicitly allowed in the standards. This article presents the investigation of five gases that are normally used to calibrate devices for the determination of safety characteristics, the maximum experimental safe gap (MESG), with an electronic transformer, and the values are compared to the ones that are obtained with the standard transformer. Additionally, calorimetric measurements on the net energy of both ignition sources were performed as well as open-circuit voltage measurements. It is concluded that the classic type of transformer can be replaced by the new type obtaining the same results for the MESG and introducing the same amount of energy into the system. Full article
Show Figures

Figure 1

14 pages, 2124 KiB  
Article
Hydrogen Purification through a Membrane–Cryogenic Integrated Process: A 3 E’s (Energy, Exergy, and Economic) Assessment
Gases 2023, 3(3), 92-105; https://doi.org/10.3390/gases3030006 - 27 Jun 2023
Cited by 1 | Viewed by 2108
Abstract
Hydrogen (H2) is known for its clean energy characteristics. Its separation and purification to produce high-purity H2 is becoming essential to promoting a H2 economy. There are several technologies, such as pressure swing adsorption, membrane, and cryogenic, which can [...] Read more.
Hydrogen (H2) is known for its clean energy characteristics. Its separation and purification to produce high-purity H2 is becoming essential to promoting a H2 economy. There are several technologies, such as pressure swing adsorption, membrane, and cryogenic, which can be adopted to produce high-purity H2; however, each standalone technology has its own pros and cons. Unlike standalone technology, the integration of technologies has shown significant potential for achieving high purity with a high recovery. In this study, a membrane–cryogenic process was integrated to separate H2 via the desublimation of carbon dioxide. The proposed process was designed, simulated, and optimized in Aspen Hysys. The results showed that the H2 was separated with a 99.99% purity. The energy analysis revealed a net-specific energy consumption of 2.37 kWh/kg. The exergy analysis showed that the membranes and multi-stream heat exchangers were major contributors to the exergy destruction. Furthermore, the calculated total capital investment of the proposed process was 816.2 m$. This proposed process could be beneficial for the development of a H2 economy. Full article
(This article belongs to the Special Issue Membrane Processes for Decarbonisation)
Show Figures

Figure 1

15 pages, 4781 KiB  
Article
Computational Fluid Dynamics Analysis of a Hollow Fiber Membrane Module for Binary Gas Mixture
Gases 2023, 3(2), 77-91; https://doi.org/10.3390/gases3020005 - 22 May 2023
Cited by 1 | Viewed by 1388
Abstract
The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was [...] Read more.
The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was considered with a fiber thickness where each component’s mass fluxes could be obtained based on the local partial pressures, solubility, diffusion, and the membrane’s selectivity. COMSOL Multiphysics was used to solve the numerical solution at corresponding operating conditions and results were compared to experimental data. The two different mixtures, CO2/CH4 and N2/O2, were investigated to obtain concentration gradient and mass flux profiles of CO2 and O2 species in an axial direction. This study allows assessing the feed pressure’s impact on the HFM system’s overall performance. These results demonstrate that the increment in feed pressures decreased the membrane system’s separation performance. The impact of hollow fiber length indicates that increasing the active fiber length has a higher effective mass transfer region but dilutes the permeate-side purities of O2 (46% to 28%) and CO2 (93% to 73%). The results show that increasing inlet pressure and a higher concentration gradient resulted in higher flux through the membrane. Full article
(This article belongs to the Special Issue Membrane Processes for Decarbonisation)
Show Figures

Figure 1

20 pages, 4420 KiB  
Article
Assessment of the Reverberations Caused by Predominant Air Pollutants on Urban Vegetation: A Multi-Site Study in Varanasi Located in Indo-Gangetic Plains
Gases 2023, 3(2), 57-76; https://doi.org/10.3390/gases3020004 - 05 Apr 2023
Cited by 2 | Viewed by 1179
Abstract
Plant responses to air pollution have been extensively studied in urban environments. Nevertheless, detailed and holistic studies assessing their retaliation to air contaminants are still limited. The present study evaluates the effect of criteria pollutants (SO2, NO2, PM10 [...] Read more.
Plant responses to air pollution have been extensively studied in urban environments. Nevertheless, detailed and holistic studies assessing their retaliation to air contaminants are still limited. The present study evaluates the effect of criteria pollutants (SO2, NO2, PM10 and O3) on the overall biochemistry and resource allocation strategy of plants in order to categorize the dominant roadside species (Mangifera indica, Psidium guajava, Ficus religiosa, Azadirachta indica, Dalbergia sissoo, Cascabela thevetia and Bougainvillea spectabilis) of the Indo-Gangetic Plains (IGP), with different morphologies and habits, into species that are tolerant and sensitive to the prevailing air pollutants. This study was performed at three different land-use sites (industrial, commercial and reference) in Varanasi for two seasons (summer and winter). It was inferred that NO2 and PM10 consistently violated the air quality standards at all the sites. The fifteen assessed parameters reflected significant variations depending upon the site, season and plant species whereupon the enzymatic antioxidants (superoxide dismutase and catalase) and resource utilization parameters (leaf area and leaf dry matter content) were remarkably affected. Based on the studied parameters, it was entrenched that deciduous tree species with compound leaves (D. sissoo > A. indica) were identified as the less sensitive, followed by a shrub (C. thevetia > B. spectabilis), while evergreen species with simple leaves were the most sensitive. It was also substantiated that the morphology of the foliage contributed more toward the differential response of the plants to air pollutants than its habit. Full article
(This article belongs to the Special Issue Air Quality: Monitoring and Assessment)
Show Figures

Figure 1

10 pages, 444 KiB  
Article
Greenhouse Gas Emissions of the Poultry Sector in Greece and Mitigation Potential Strategies
Gases 2023, 3(1), 47-56; https://doi.org/10.3390/gases3010003 - 14 Mar 2023
Cited by 1 | Viewed by 1413
Abstract
The poultry sector is considered to be one of the most industrialized sectors of livestock production. Although the livestock sector contributes the 14.5% of total anthropogenic greenhouse gas (GHG) emissions, less attention has been paid in the respective emissions of the poultry sector [...] Read more.
The poultry sector is considered to be one of the most industrialized sectors of livestock production. Although the livestock sector contributes the 14.5% of total anthropogenic greenhouse gas (GHG) emissions, less attention has been paid in the respective emissions of the poultry sector compared to other farmed animals such as ruminants. The aim of the study was to estimate the carbon footprint of the poultry sector (layers, broilers, and backyards) in the Greek territory during the last 60 years as a means of exploring further mitigation strategies. Tier 2 methodology was used to estimate GHG emissions. Different mitigation scenarios related to changes in herd population, feeds, and manure management were examined. GHG emissions showed an increased trend over time. The different scenarios explored showed moderate to high mitigating potential depending on the parameters that were changed. Changes in manure management or diet revealed to have a higher potential to eliminate GHG emissions. Changes in population numbers showed a low mitigating potential. However, if mortality could be improved within industrialized farming systems, then it could be an indirect increase in product quantities with a slight increase in emissions. Therefore, depending on national priorities, the sector could improve its environmental impact by targeting aspects related to husbandry/management practices. Full article
Show Figures

Figure 1

22 pages, 5102 KiB  
Review
The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production
Gases 2023, 3(1), 25-46; https://doi.org/10.3390/gases3010002 - 03 Feb 2023
Cited by 23 | Viewed by 8824
Abstract
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen, produced with water electrolysis powered exclusively by renewable energy sources. However, several other technologies and sources are available or under development to satisfy the current [...] Read more.
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen, produced with water electrolysis powered exclusively by renewable energy sources. However, several other technologies and sources are available or under development to satisfy the current and future hydrogen demand. In fact, hydrogen production involves different resources and energy loads, depending on the production method used. Therefore, the industry has tried to set a classification code for this energy carrier. This is done by using colors that reflect the hydrogen production method, the resources consumed to produce the required energy, and the number of emissions generated during the process. Depending on the reviewed literature, some colors have slightly different definitions, thus making the classifications imprecise. Therefore, this techno-economic analysis clarifies the meaning of each hydrogen color by systematically reviewing their production methods, consumed energy sources, and generated emissions. Then, an economic assessment compares the costs of the various hydrogen colors and examines the most feasible ones and their potential evolution. The scientific community and industry’s clear understanding of the advantages and drawbacks of each element of the hydrogen color spectrum is an essential step toward reaching a sustainable hydrogen economy. Full article
Show Figures

Graphical abstract

24 pages, 1060 KiB  
Review
A Review on Qualitative Assessment of Natural Gas Utilisation Options for Eliminating Routine Nigerian Gas Flaring
Gases 2023, 3(1), 1-24; https://doi.org/10.3390/gases3010001 - 28 Jan 2023
Cited by 6 | Viewed by 4291
Abstract
Natural gas flaring, with its harmful environmental, health, and economic effects, is common in the Nigerian oil and gas industry because of a lower tax regime for flared gases. Based on the adverse effects of flared gas, the Nigerian government has renewed and [...] Read more.
Natural gas flaring, with its harmful environmental, health, and economic effects, is common in the Nigerian oil and gas industry because of a lower tax regime for flared gases. Based on the adverse effects of flared gas, the Nigerian government has renewed and improved its efforts to reduce or eliminate gas flaring through the application of natural gas utilisation techniques. However, because the conventional approach to flare gas utilisation is heavily reliant on achieving scale, fuel, and end-product prices, not all technologies are technically and economically viable for typically capturing large and small quantities of associated gas from various flare sites or gas fields (located offshore or onshore). For these reasons, this paper reviews and compares various flare gas utilisation options to guide their proper selection for appropriate implementation in the eradication of routine gas flaring in Nigeria and to promote the Zero Routine Flaring initiative, which aims to reduce flaring levels dramatically by 2030. A qualitative assessment is used in this study to contrast the various flare gas utilisation options against key decision drivers. In this analysis, three natural gas utilisation processes—liquefied natural gas (LNG), gas to wire (GTW), and gas to methanol (GTM)—are recommended as options for Nigeria because of their economic significance, technological viability (both onshore and offshore), and environmental benefits. All these gas utilisation options have the potential to significantly reduce and prevent routine gas flaring in Nigeria and can be used separately or in combination to create synergies that could lower project costs and product market risk. This article clearly identifies the environmental benefits and the technical and economic viability of infrastructure investments to recover and repurpose flare gasses along with recommendation steps to select and optimise economies of scale for an associated natural gas utilisation option. Full article
Show Figures

Figure 1

20 pages, 2737 KiB  
Article
Explosive Processes in Permafrost as a Result of the Development of Local Gas-Saturated Fluid-Dynamic Geosystems
Gases 2022, 2(4), 146-165; https://doi.org/10.3390/gases2040009 - 07 Dec 2022
Viewed by 1296
Abstract
The relevance of studying explosive processes in permafrost lies in the prospect of gas production from small gas-saturated zones in the subsurface; the influx of significant amounts of greenhouse gases from frozen soils creates a threat to infrastructure. The purpose of this article [...] Read more.
The relevance of studying explosive processes in permafrost lies in the prospect of gas production from small gas-saturated zones in the subsurface; the influx of significant amounts of greenhouse gases from frozen soils creates a threat to infrastructure. The purpose of this article is to reveal the general patterns of frozen soils’ transformation in local zones of natural explosions. The greatest volume of information about the processes preceding the formation of gas-emission craters can be obtained by studying the deformations of the cryogenic structure of soil. The typification of the elements of the cryogenic structures of frozen soils that form the walls of various gas-emission craters was carried out. Structural and morphological analyses were used as a methodological basis for studying gas-emission craters. This method involves a set of operations that establishes links between the cryogenic structure of the crater walls and the morphologies of their surfaces. In this study, it is concluded that gas-emission craters are the result of the self-development of local gas-dynamic geosystems that are in a non-equilibrium thermodynamic state with respect to the enclosing permafrost. Full article
(This article belongs to the Section Gas Emissions)
Show Figures

Figure 1

12 pages, 3247 KiB  
Article
Statistical Review of the Italian Gas Transmission System Operator under Conditions of the COVID-19 Pandemic and the Supply Restriction from the Russian Federation
Gases 2022, 2(4), 134-145; https://doi.org/10.3390/gases2040008 - 09 Oct 2022
Cited by 1 | Viewed by 1625
Abstract
The coronavirus pandemic caused a crisis in industrial economies, enforcing public concern. The first case of the infection in Europe occurred in Italy. Nowadays, in the field of European gas infrastructure, Italy stands as one of the leading countries transporting gaseous fuel to [...] Read more.
The coronavirus pandemic caused a crisis in industrial economies, enforcing public concern. The first case of the infection in Europe occurred in Italy. Nowadays, in the field of European gas infrastructure, Italy stands as one of the leading countries transporting gaseous fuel to end users. This article provides an overview of the distribution of natural gas flows in the Italian gas infrastructure in the face of the coronavirus outspread in the country and GAZPROM’s natural gas supply restrictions for European countries. This article presents, using the ARIMA method, a forecast of natural gas consumption of Italian consumers measured up to 2024. Full article
Show Figures

Figure 1

Back to TopTop