Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Journal = Network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5250 KiB  
Review
A Survey on Routing Solutions for Low-Power and Lossy Networks: Toward a Reliable Path-Finding Approach
Network 2024, 4(1), 1-32; https://doi.org/10.3390/network4010001 - 15 Jan 2024
Abstract
Low-Power and Lossy Networks (LLNs) have grown rapidly in recent years owing to the increased adoption of Internet of Things (IoT) and Machine-to-Machine (M2M) applications across various industries, including smart homes, industrial automation, healthcare, and smart cities. Owing to the characteristics of LLNs, [...] Read more.
Low-Power and Lossy Networks (LLNs) have grown rapidly in recent years owing to the increased adoption of Internet of Things (IoT) and Machine-to-Machine (M2M) applications across various industries, including smart homes, industrial automation, healthcare, and smart cities. Owing to the characteristics of LLNs, such as Lossy channels and limited power, generic routing solutions designed for non-LLNs may not be adequate in terms of delivery reliability and routing efficiency. Consequently, a routing protocol for LLNs (RPL) was designed. Several RPL objective functions have been proposed to enhance the routing reliability in LLNs. This paper analyses these solutions against performance and security requirements to identify their limitations. Firstly, it discusses the characteristics and security issues of LLN and their impact on packet delivery reliability and routing efficiency. Secondly, it provides a comprehensive analysis of routing solutions and identifies existing limitations. Thirdly, based on these limitations, this paper highlights the need for a reliable and efficient path-finding solution for LLNs. Full article
40 pages, 2095 KiB  
Review
TSN Network Scheduling—Challenges and Approaches
Network 2023, 3(4), 585-624; https://doi.org/10.3390/network3040026 - 16 Dec 2023
Viewed by 729
Abstract
Time-Sensitive Networking (TSN) is a set of Ethernet standards aimed to improve determinism in packet delivery for converged networks. The main goal is to provide mechanisms that enable low and predictable transmission latency and high availability for demanding applications such as real-time audio/video [...] Read more.
Time-Sensitive Networking (TSN) is a set of Ethernet standards aimed to improve determinism in packet delivery for converged networks. The main goal is to provide mechanisms that enable low and predictable transmission latency and high availability for demanding applications such as real-time audio/video streaming, automotive, and industrial control. To provide the required guarantees, TSN integrates different traffic shaping mechanisms including 802.1Qbv, 802.1Qch, and 802.1Qcr, allowing for the coexistence of different traffic classes with different priorities on the same network. Achieving the required quality of service (QoS) level needs proper selection and configuration of shaping mechanisms, which is difficult due to the diversity in the requirements of the coexisting streams under the presence of potential end-system-induced jitter. This paper discusses the suitability of the TSN traffic shaping mechanisms for the different traffic types, analyzes the TSN network configuration problem, i.e., finds the optimal path and shaper configurations for all TSN elements in the network to provide the required QoS, discusses the goals, constraints, and challenges of time-aware scheduling, and elaborates on the evaluation criteria of both the network-wide schedules and the scheduling algorithms that derive the configurations to present a common ground for comparison between the different approaches. Finally, we analyze the evolution of the scheduling task, identify shortcomings, and suggest future research directions. Full article
Show Figures

Figure 1

22 pages, 1956 KiB  
Review
Maritime Communications—Current State and the Future Potential with SDN and SDR
Network 2023, 3(4), 563-584; https://doi.org/10.3390/network3040025 - 14 Dec 2023
Viewed by 474
Abstract
The rise of the Internet of Things (IoT) has opened up exciting possibilities for new applications. One such novel application is the modernization of maritime communications. Effective maritime communication is vital for ensuring the safety of crew members, vessels, and cargo. The maritime [...] Read more.
The rise of the Internet of Things (IoT) has opened up exciting possibilities for new applications. One such novel application is the modernization of maritime communications. Effective maritime communication is vital for ensuring the safety of crew members, vessels, and cargo. The maritime industry is responsible for the transportation of a significant portion of global trade, and as such, the efficient and secure transfer of information is essential to maintain the flow of goods and services. With the increasing complexity of maritime operations, technological advancements such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), and the Internet of Ships (IoS) have been introduced to enhance communication and operational efficiency. However, these technologies also bring new challenges in terms of security and network management. Compromised IT systems, with escalated privileges, can potentially enable easy and ready access to operational technology (OT) systems and networks with the same privileges, with an increased risk of zero-day attacks. In this paper, we first provide a review of the current state and modalities of maritime communications. We then review the current adoption of software-defined radios (SDRs) and software-defined networks (SDNs) in the maritime industry and evaluate their impact as maritime IoT enablers. Finally, as a key contribution of this paper, we propose a unified SDN–SDR-driven cross-layer communications framework that leverages the existing SATCOM communications infrastructure, for improved and resilient maritime communications in highly dynamic and resource-constrained environments. Full article
Show Figures

Figure 1

25 pages, 1100 KiB  
Article
Optimized MLP-CNN Model to Enhance Detecting DDoS Attacks in SDN Environment
Network 2023, 3(4), 538-562; https://doi.org/10.3390/network3040024 - 01 Dec 2023
Viewed by 603
Abstract
In the contemporary landscape, Distributed Denial of Service (DDoS) attacks have emerged as an exceedingly pernicious threat, particularly in the context of network management centered around technologies like Software-Defined Networking (SDN). With the increasing intricacy and sophistication of DDoS attacks, the need for [...] Read more.
In the contemporary landscape, Distributed Denial of Service (DDoS) attacks have emerged as an exceedingly pernicious threat, particularly in the context of network management centered around technologies like Software-Defined Networking (SDN). With the increasing intricacy and sophistication of DDoS attacks, the need for effective countermeasures has led to the adoption of Machine Learning (ML) techniques. Nevertheless, despite substantial advancements in this field, challenges persist, adversely affecting the accuracy of ML-based DDoS-detection systems. This article introduces a model designed to detect DDoS attacks. This model leverages a combination of Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN) to enhance the performance of ML-based DDoS-detection systems within SDN environments. We propose utilizing the SHapley Additive exPlanations (SHAP) feature-selection technique and employing a Bayesian optimizer for hyperparameter tuning to optimize our model. To further solidify the relevance of our approach within SDN environments, we evaluate our model by using an open-source SDN dataset known as InSDN. Furthermore, we apply our model to the CICDDoS-2019 dataset. Our experimental results highlight a remarkable overall accuracy of 99.95% with CICDDoS-2019 and an impressive 99.98% accuracy with the InSDN dataset. These outcomes underscore the effectiveness of our proposed DDoS-detection model within SDN environments compared to existing techniques. Full article
(This article belongs to the Special Issue Advanced Technologies in Network and Service Management)
Show Figures

Figure 1

16 pages, 721 KiB  
Article
AIS for Malware Detection in a Realistic IoT System: Challenges and Opportunities
Network 2023, 3(4), 522-537; https://doi.org/10.3390/network3040023 - 16 Nov 2023
Viewed by 671
Abstract
With the expansion of the digital world, the number of Internet of things (IoT) devices is evolving dramatically. IoT devices have limited computational power and a small memory. Consequently, existing and complex security methods are not suitable to detect unknown malware attacks in [...] Read more.
With the expansion of the digital world, the number of Internet of things (IoT) devices is evolving dramatically. IoT devices have limited computational power and a small memory. Consequently, existing and complex security methods are not suitable to detect unknown malware attacks in IoT networks. This has become a major concern in the advent of increasingly unpredictable and innovative cyberattacks. In this context, artificial immune systems (AISs) have emerged as an effective malware detection mechanism with low requirements for computation and memory. In this research, we first validate the malware detection results of a recent AIS solution using multiple datasets with different types of malware attacks. Next, we examine the potential gains and limitations of promising AIS solutions under realistic implementation scenarios. We design a realistic IoT framework mimicking real-life IoT system architectures. The objective is to evaluate the AIS solutions’ performance with regard to the system constraints. We demonstrate that AIS solutions succeed in detecting unknown malware in the most challenging conditions. Furthermore, the systemic results with different system architectures reveal the AIS solutions’ ability to transfer learning between IoT devices. Transfer learning is a pivotal feature in the presence of highly constrained devices in the network. More importantly, this work highlights that previously published AIS performance results, which were obtained in a simulation environment, cannot be taken at face value. In reality, AIS’s malware detection accuracy for IoT systems is 91% in the most restricted designed system compared to the 99% accuracy rate reported in the simulation experiment. Full article
Show Figures

Figure 1

20 pages, 12746 KiB  
Article
Enhancing Cache Robustness in Information-Centric Networks: Per-Face Popularity Approaches
Network 2023, 3(4), 502-521; https://doi.org/10.3390/network3040022 - 01 Nov 2023
Viewed by 1068
Abstract
Information-Centric Networking (ICN) is a new paradigm of network architecture that focuses on content rather than hosts as first-class citizens of the network. As part of these architectures, in-network storage devices are essential to provide end users with close copies of popular content, [...] Read more.
Information-Centric Networking (ICN) is a new paradigm of network architecture that focuses on content rather than hosts as first-class citizens of the network. As part of these architectures, in-network storage devices are essential to provide end users with close copies of popular content, to reduce latency and improve the overall experience for the user but also to reduce network congestion and load on the content producers. To be effective, in-network storage devices, such as content storage routers, should maintain copies of the most popular content objects. Adversaries that wish to reduce this effectiveness can launch cache pollution attacks to eliminate the benefit of the in-network storage device caches. Therefore, it is crucial to protect these devices and ensure the highest hit rate possible. This paper demonstrates Per-Face Popularity approaches to reducing the effects of cache pollution and improving hit rates by normalizing assessed popularity across all faces of content storage routers. The mechanisms that were developed prevent consumers, whether legitimate or malicious, on any single face or small number of faces from overwhelmingly influencing the content objects that remain in the cache. The results demonstrate that per-face approaches generally have much better hit rates than currently used cache replacement techniques. Full article
Show Figures

Figure 1

20 pages, 16587 KiB  
Article
Survey for Soil Sensing with IOT and Traditional Systems
Network 2023, 3(4), 482-501; https://doi.org/10.3390/network3040021 - 08 Oct 2023
Viewed by 640
Abstract
Smart Agriculture has gained significant attention in recent years due to its benefits for both humans and the environment. However, the high costs associated with commercial devices have prevented some agricultural lands from reaping the advantages of technological advancements. Traditional methods, such as [...] Read more.
Smart Agriculture has gained significant attention in recent years due to its benefits for both humans and the environment. However, the high costs associated with commercial devices have prevented some agricultural lands from reaping the advantages of technological advancements. Traditional methods, such as reflectance spectroscopy, offer reliable and repeatable solutions for soil property sensing, but the high costs and redundancy of preprocessing steps limit their on-site applications in real-world scenarios. Recently, RF-based soil sensing systems have opened a new dimension in soil property analysis using IoT-based systems. These systems are not only portable, but also significantly cheaper than traditional methods. In this paper, we carry out a comprehensive review of state-of-the-art soil property sensing, divided into four areas. First, we delve into the fundamental knowledge and studies of reflectance-spectroscopy-based soil sensing, also known as traditional methods. Secondly, we introduce some RF-based IoT soil sensing systems employing a variety of signal types. In the third segment, we introduce the details of sample pretreatment, inference methods, and evaluation metrics. Finally, after analyzing the strengths and weaknesses of the current work, we discuss potential future aspects of soil property sensing. Full article
(This article belongs to the Special Issue Innovative Mobile Computing, Communication, and Sensing Systems)
Show Figures

Figure 1

13 pages, 396 KiB  
Article
Preventing Black Hole Attacks in AODV Using RREQ Packets
Network 2023, 3(4), 469-481; https://doi.org/10.3390/network3040020 - 07 Oct 2023
Viewed by 591
Abstract
Ad hoc networks, formed by multiple wireless communication devices without any connection to wired or intermediary devices such as by access points, are widely used in various situations to construct flexible networks that are not restricted by communication facilities. Ad hoc networks can [...] Read more.
Ad hoc networks, formed by multiple wireless communication devices without any connection to wired or intermediary devices such as by access points, are widely used in various situations to construct flexible networks that are not restricted by communication facilities. Ad hoc networks can rarely use existing infrastructure, and no authentication infrastructure is included in these networks as a trusted third party. Hence, distinguishing between ordinary and malicious terminals can be challenging. As a result, black hole attacks are among the most serious security threats to Ad hoc On-demand Distance Vector (AODV) routing, which is one of the most popular routing protocols in mobile ad hoc networks. In this study, we propose a defense method against black hole attacks in which malicious nodes are actively detected to prevent attacks. We applied the proposed method to a network containing nodes engaging in black hole attacks, confirming that the network’s performance is dramatically improved compared to a network without the proposed method. Full article
Show Figures

Figure 1

18 pages, 522 KiB  
Article
Evaluation of Modern Internet Transport Protocols over GEO Satellite Links
Network 2023, 3(3), 451-468; https://doi.org/10.3390/network3030019 - 18 Sep 2023
Viewed by 779
Abstract
New versions of HTTP protocols have been developed to overcome many of the limitations of the original HTTP/1.1 protocol and its underlying transport mechanism over TCP. In this paper, we investigated the performance of modern Internet protocols such as HTTP/2 over TCP and [...] Read more.
New versions of HTTP protocols have been developed to overcome many of the limitations of the original HTTP/1.1 protocol and its underlying transport mechanism over TCP. In this paper, we investigated the performance of modern Internet protocols such as HTTP/2 over TCP and HTTP/3 over QUIC in high-latency satellite links. The goal was to uncover the interaction of the new features of HTTP such as parallel streams and optimized security handshake with modern congestion control algorithms such as CUBIC and BBR over high-latency links. An experimental satellite network emulation testbed was developed for the evaluation. The study analyzed several user-level web performance metrics such as average page load time, First Contentful Paint and Largest Contentful Paint. The results indicate an overhead problem with HTTP/3 that becomes more significant when using a loss-based congestion control algorithm such as CUBIC which is widely used on the Internet. Also, the results highlight the significance of the web page structure and how objects are distributed in it. Among the various Internet protocols evaluated, the results show that HTTP/3 over QUIC will perform better by an average of 35% than HTTP/2 over TCP in satellites links specifically with a more aggressive congestion algorithm such as BBR. This can be attributed to the non-blocking stream multiplexing feature of QUIC and the reduced TLS handshake of HTTP/3. Full article
Show Figures

Figure 1

29 pages, 2385 KiB  
Review
An Analysis of Cloud Security Frameworks, Problems and Proposed Solutions
Network 2023, 3(3), 422-450; https://doi.org/10.3390/network3030018 - 12 Sep 2023
Cited by 1 | Viewed by 3172
Abstract
The rapidly growing use of cloud computing raises security concerns. This study paper seeks to examine cloud security frameworks, addressing cloud-associated issues and suggesting solutions. This research provides greater knowledge of the various frameworks, assisting in making educated decisions about selecting and implementing [...] Read more.
The rapidly growing use of cloud computing raises security concerns. This study paper seeks to examine cloud security frameworks, addressing cloud-associated issues and suggesting solutions. This research provides greater knowledge of the various frameworks, assisting in making educated decisions about selecting and implementing suitable security measures for cloud-based systems. The study begins with introducing cloud technology, its issues and frameworks to secure infrastructure, and an examination of the various cloud security frameworks available in the industry. A full comparison is performed to assess the framework’s focus, scope, approach, strength, limitations, implementation steps and tools required in the implementation process. The frameworks focused on in the paper are COBIT5, NIST (National Institute of Standards and Technology), ISO (International Organization for Standardization), CSA (Cloud Security Alliance) STAR and AWS (Amazon Web Services) well-architected framework. Later, the study digs into identifying and analyzing prevalent cloud security issues. This contains attack vectors that are inherent in cloud settings. Plus, this part includes the risk factor of top cloud security threats and their effect on cloud platforms. Also, it presents ideas and countermeasures to reduce the observed difficulties. Full article
Show Figures

Figure 1

79 pages, 2088 KiB  
Review
A Review of Blockchain Technology in Knowledge-Defined Networking, Its Application, Benefits, and Challenges
Network 2023, 3(3), 343-421; https://doi.org/10.3390/network3030017 - 30 Aug 2023
Cited by 2 | Viewed by 2075
Abstract
Knowledge-Defined Networking (KDN) necessarily consists of a knowledge plane for the generation of knowledge, typically using machine learning techniques, and the dissemination of knowledge, in order to make knowledge-driven intelligent network decisions. In one way, KDN can be recognized as knowledge-driven Software-Defined Networking [...] Read more.
Knowledge-Defined Networking (KDN) necessarily consists of a knowledge plane for the generation of knowledge, typically using machine learning techniques, and the dissemination of knowledge, in order to make knowledge-driven intelligent network decisions. In one way, KDN can be recognized as knowledge-driven Software-Defined Networking (SDN), having additional management and knowledge planes. On the other hand, KDN encapsulates all knowledge-/intelligence-/ cognition-/machine learning-driven networks, emphasizing knowledge generation (KG) and dissemination for making intelligent network decisions, unlike SDN, which emphasizes logical decoupling of the control plane. Blockchain is a technology created for secure and trustworthy decentralized transaction storage and management using a sequence of immutable and linked transactions. The decision-making trustworthiness of a KDN system is reliant on the trustworthiness of the data, knowledge, and AI model sharing. To this point, a KDN may make use of the capabilities of the blockchain system for trustworthy data, knowledge, and machine learning model sharing, as blockchain transactions prevent repudiation and are immutable, pseudo-anonymous, optionally encrypted, reliable, access-controlled, and untampered, to protect the sensitivity, integrity, and legitimacy of sharing entities. Furthermore, blockchain has been integrated with knowledge-based networks for traffic optimization, resource sharing, network administration, access control, protecting privacy, traffic filtering, anomaly or intrusion detection, network virtualization, massive data analysis, edge and cloud computing, and data center networking. Despite the fact that many academics have employed the concept of blockchain in cognitive networks to achieve various objectives, we can also identify challenges such as high energy consumption, scalability issues, difficulty processing big data, etc. that act as barriers for integrating the two concepts together. Academicians have not yet reviewed blockchain-based network solutions in diverse application categories for diverse knowledge-defined networks in general, which consider knowledge generation and dissemination using various techniques such as machine learning, fuzzy logic, and meta-heuristics. Therefore, this article fills a void in the content of the literature by first reviewing the diverse existing blockchain-based applications in diverse knowledge-based networks, analyzing and comparing the existing works, describing the advantages and difficulties of using blockchain systems in KDN, and, finally, providing propositions based on identified challenges and then presenting prospects for the future. Full article
Show Figures

Figure 1

17 pages, 4294 KiB  
Article
Route Optimization of Unmanned Aerial Vehicle Sensors for Localization of Wireless Emitters in Outdoor Environments
Network 2023, 3(3), 326-342; https://doi.org/10.3390/network3030016 - 18 Aug 2023
Viewed by 617
Abstract
Localization methods of unknown emitters are used for the monitoring of illegal radio waves. The localization methods using ground-based sensors suffer from a degradation of localization accuracy in environments where the distance between the emitter and the sensor is non-line-of-sight (NLoS). Therefore, research [...] Read more.
Localization methods of unknown emitters are used for the monitoring of illegal radio waves. The localization methods using ground-based sensors suffer from a degradation of localization accuracy in environments where the distance between the emitter and the sensor is non-line-of-sight (NLoS). Therefore, research is being conducted to improve localization accuracy by utilizing Unmanned Aerial Vehicles (UAVs) as sensors to ensure a line-of-sight (LoS) condition. However, UAVs can fly freely over the sky, making it difficult to optimize flight paths based on particle swarm optimization (PSO) for efficient and accurate localization. This paper examines the optimization of UAV flight paths to achieve highly efficient and accurate outdoor localization of unknown emitters via two approaches, a circular orbit and free-path trajectory, respectively. Our numerical results reveal the improved localization estimation error performance of our proposed approach. Particularly, when evaluating at the 90th percentile of the error’s cumulative distribution function (CDF), the proposed approach can reach an error of 28.59 m with a circular orbit and 12.91 m with a free-path orbit, as compared to the conventional fixed sensor case whose localization estimation error is 55.02 m. Full article
(This article belongs to the Special Issue Innovative Mobile Computing, Communication, and Sensing Systems)
Show Figures

Figure 1

28 pages, 921 KiB  
Article
Arithmetic Study about Efficiency in Network Topologies for Data Centers
Network 2023, 3(3), 298-325; https://doi.org/10.3390/network3030015 - 26 Jun 2023
Cited by 1 | Viewed by 1366
Abstract
Data centers are getting more and more attention due the rapid increase of IoT deployments, which may result in the implementation of smaller facilities being closer to the end users as well as larger facilities up in the cloud. In this paper, an [...] Read more.
Data centers are getting more and more attention due the rapid increase of IoT deployments, which may result in the implementation of smaller facilities being closer to the end users as well as larger facilities up in the cloud. In this paper, an arithmetic study has been carried out in order to measure a coefficient related to both the average number of hops among nodes and the average number of links among devices for a range of typical network topologies fit for data centers. Such topologies are either tree-like or graph-like designs, where this coefficient provides a balance between performance and simplicity, resulting in lower values in the coefficient accounting for a better compromise between both factors in redundant architectures. The motivation of this contribution is to craft a coefficient that is easy to calculate by applying simple arithmetic operations. This coefficient can be seen as another tool to compare network topologies in data centers that could act as a tie-breaker so as to select a given design when other parameters offer contradictory results. Full article
Show Figures

Figure 1

29 pages, 824 KiB  
Review
Recent Development of Emerging Indoor Wireless Networks towards 6G
Network 2023, 3(2), 269-297; https://doi.org/10.3390/network3020014 - 12 May 2023
Cited by 4 | Viewed by 2414
Abstract
Sixth-generation (6G) mobile technology is currently under development, and is envisioned to fulfill the requirements of a fully connected world, providing ubiquitous wireless connectivity for diverse users and emerging applications. Transformative solutions are expected to drive the surge to accommodate a rapidly growing [...] Read more.
Sixth-generation (6G) mobile technology is currently under development, and is envisioned to fulfill the requirements of a fully connected world, providing ubiquitous wireless connectivity for diverse users and emerging applications. Transformative solutions are expected to drive the surge to accommodate a rapidly growing number of intelligent devices and services. In this regard, wireless local area networks (WLANs) have a major role to play in indoor spaces, from supporting explosive growth in high-bandwidth applications to massive sensor arrays with diverse network requirements. Sixth-generation technology is expected to have a superconvergence of networks, including WLANs, to support this growth in applications in multiple dimensions. To this end, this paper comprehensively reviews the latest developments in diverse WLAN technologies, including WiFi, visible light communication, and optical wireless communication networks, as well as their technical capabilities. This paper also discusses how well these emerging WLANs align with supporting 6G requirements. The analyses presented in the paper provide insight into the research opportunities that need to be investigated to overcome the challenges in integrating WLANs in a 6G ecosystem. Full article
Show Figures

Figure 1

16 pages, 2028 KiB  
Article
Clustered Distributed Learning Exploiting Node Centrality and Residual Energy (CINE) in WSNs
Network 2023, 3(2), 253-268; https://doi.org/10.3390/network3020013 - 23 Apr 2023
Viewed by 1237
Abstract
With the explosion of big data, the implementation of distributed machine learning mechanisms in wireless sensor networks (WSNs) is becoming required for reducing the number of data traveling throughout the network and for identifying anomalies promptly and reliably. In WSNs, the above need [...] Read more.
With the explosion of big data, the implementation of distributed machine learning mechanisms in wireless sensor networks (WSNs) is becoming required for reducing the number of data traveling throughout the network and for identifying anomalies promptly and reliably. In WSNs, the above need has to be considered along with the limited energy and processing resources available at the nodes. In this paper, we tackle the resulting complex problem by designing a multi-criteria protocol CINE that stands for “Clustered distributed learnIng exploiting Node centrality and residual Energy” for distributed learning in WSNs. More specifically, considering the energy and processing capabilities of nodes, we design a scheme that assumes that nodes are partitioned in clusters and selects a central node in each cluster, called cluster head (CH), that executes the training of the machine learning (ML) model for all the other nodes in the cluster, called cluster members (CMs). In fact, CMs are responsible for executing the inference only. Since the CH role requires the consumption of more resources, the proposed scheme rotates the CH role among all nodes in the cluster. The protocol has been simulated and tested using real environmental data sets. Full article
Show Figures

Figure 1

Back to TopTop