Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,235)

Search Parameters:
Journal = Foods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 876 KiB  
Article
Applications of Saponin Extract from Asparagus Roots as Functional Ingredient
Foods 2024, 13(2), 274; https://doi.org/10.3390/foods13020274 - 15 Jan 2024
Abstract
When replanting an asparagus field, the roots of the previous crop are crushed and incorporated into the soil, creating problems of autotoxicity and fungal infections. Asparagus roots can be considered as a valuable byproduct, since they are very rich in saponins (3–6%), compounds [...] Read more.
When replanting an asparagus field, the roots of the previous crop are crushed and incorporated into the soil, creating problems of autotoxicity and fungal infections. Asparagus roots can be considered as a valuable byproduct, since they are very rich in saponins (3–6%), compounds currently considered as bio-emulsifiers. The objective is to evaluate the emulsifying and foaming capacity of a saponin extract from asparagus roots (ARS) and compare it with other commercial extracts. ARS was obtained using a process patented by our research group. The results have shown that ARS has activity similar to Quillaja extract. Its critical micellar concentration falls between that of Quillaja and Tribulus extracts (0.064, 0.043, and 0.094 g/100 mL, respectively). Both emulsifying and foaming activities are affected by pH, salt, and sucrose to a similar extent as the other extracts. Additionally, it has demonstrated an inhibitory effect on pancreatic lipase, which is even better than the other two studied extracts, as indicated by its IC50 value (0.7887, 1.6366, and 2.0107 mg/mL for asparagus, Quillaja, and Tribulus, respectively). These results suggest that ARS could serve as a natural emulsifying/foaming agent for healthier and safer food products and as a potential aid in treatments for obesity and hyperlipidemia. Full article
20 pages, 7301 KiB  
Article
Broccoli Improves Lipid Metabolism and Intestinal Flora in Mice with Type 2 Diabetes Induced by HFD and STZ Diet
Foods 2024, 13(2), 273; https://doi.org/10.3390/foods13020273 - 15 Jan 2024
Abstract
Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 [...] Read more.
Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism, lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1β and IL-6, and decrease the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore, broccoli altered the intestinal flora’s makeup in mice with T2DM. At the genus level, the relative abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the relative abundances of Erysipelotrichaceae and Rikenellaceae increased. Full article
Show Figures

Figure 1

18 pages, 879 KiB  
Article
Quality Evaluation and Browning Control in the Multi-Stage Processing of Mume Fructus (Wumei)
Foods 2024, 13(2), 272; https://doi.org/10.3390/foods13020272 - 15 Jan 2024
Abstract
The dried Mume Fructus (MF), called Wumei in China, is a unique food with medicinal and edible effects. But its actual production method is outdated with low efficiency and inconsistent quality. This study systematically investigated the influence of moisture content (MC), temperature, and [...] Read more.
The dried Mume Fructus (MF), called Wumei in China, is a unique food with medicinal and edible effects. But its actual production method is outdated with low efficiency and inconsistent quality. This study systematically investigated the influence of moisture content (MC), temperature, and relative humidity (RH) on the browning reaction and quality characteristics of the MF and proposed a continuous processing strategy of the three-stage variable process for MF production based on the precise process control of the temperature and the RH. The production process of MF was divided into three stages: preliminary dehydration, browning, and drying. The results showed that the browning reaction rate and drying efficiency were optimal when the MC of the raw materials was reduced to 50%. In the browning stage, the degree of browning was better, and the antioxidant capacity reached the maximum of 64.38 mg/g DM under a processing temperature of 80 °C and an RH of more than 60%. As the RH increased, the drying rate decreased, and the ash content exhibited an increase. Therefore, the optimal processing parameters for the browning stage were determined to be a temperature of 80 °C and an RH of 60%. In the final drying stage, a temperature of 60 °C coupled with a dehumidification mode proved sufficient to ensure efficient drying without compromising the quality of the MF. This study revealed the reaction mechanism of the rapid browning processing of MF, which has important guiding significance for the rapid processing of browning foods. Full article
(This article belongs to the Special Issue Application of Various Drying Technologies in Food Industry)
20 pages, 1315 KiB  
Article
Development of Gluten-Free Bread Production Technology with Enhanced Nutritional Value in the Context of Kazakhstan
Foods 2024, 13(2), 271; https://doi.org/10.3390/foods13020271 - 15 Jan 2024
Abstract
This research aims to enhance the nutritional value of gluten-free bread by incorporating a diverse range of components, including additives with beneficial effects on human health, e.g., dietary fibers. The research was focused on improving the texture, taste, and nutritional content of gluten-free [...] Read more.
This research aims to enhance the nutritional value of gluten-free bread by incorporating a diverse range of components, including additives with beneficial effects on human health, e.g., dietary fibers. The research was focused on improving the texture, taste, and nutritional content of gluten-free products by creating new recipes and including novel biological additives. The goal was to develop gluten-free bread with less than 3 ppm gluten content that can be eaten by people suffering from gluten sensitivity. The physical and chemical properties of gluten-free rice, corn, green buckwheat, chickpea, amaranth, and plantain flours were examined to understand their unique characteristics and the possibility of their mixing combination to achieve the desired results. Initially, nine recipes were prepared, and in survey research, four baking recipes were selected and tested. The composition of amino acids in the prepared gluten-free bread was determined. The variant made of corn, green buckwheat flour with plantain was found to be top-rated. Changes in the nutritional content of the new product were analyzed, and general regulations and nutritional values were identified. Experimental baking processes were carried out, leading to the successful formulation of gluten-free bread containing corn, green buckwheat, and plantain flour in a ratio of 40:40:20, meeting gluten-free requirements and demonstrating improved nutritional properties, as well as consumption properties, confirmed by surveys conducted on a group of consumers. Full article
17 pages, 3058 KiB  
Article
Physicochemical Characterization of Pectic Polysaccharides from Rose Essential Oil Industry By-Products
Foods 2024, 13(2), 270; https://doi.org/10.3390/foods13020270 - 15 Jan 2024
Viewed by 63
Abstract
The rose essential oil industry generates large quantities of solid byproducts yearly. These by-products, usually discarded, could yield valuable substances, such as pectic polysaccharides, widely used in the food industry as jelling agents. Seven industrial by-products were investigated as a source of pectic [...] Read more.
The rose essential oil industry generates large quantities of solid byproducts yearly. These by-products, usually discarded, could yield valuable substances, such as pectic polysaccharides, widely used in the food industry as jelling agents. Seven industrial by-products were investigated as a source of pectic polysaccharides: four samples resulted from the treatment of Rosa damascena, two from Rosa alba, and one from Rosa centifolia. Three by-products were from steam-water distillation, two from CO2-supercritical extraction, and two after extraction with hexane and 1,1,1,2-tetrafluoroethane. The by-products were pretreated with 70% ethanol and extracted with 0.1 M HCl. The highest polysaccharide yield was observed for 1,1,1,2-tetrafluoroethane-extracted (RD_F) Rosa damascena by-products (13.98 ± 0.14%), followed by hexane (RD_X) and CO2-extracted (RD_CO2) Rosa damascena (12.68 ± 0.11 and 12.66 ± 0.10%, respectively). The polysaccharides were middle-methoxylated pectins, except RD_F and RD_X, having 26.68 ± 1.14 and 31.39 ± 1.39 mol % degree of methoxylation (low-methoxyl pectins). The polysaccharides had molecular masses in the 2.3–2.6 × 104 Da range. The rheological studies suggested RD_F formed a strong high-sucrose gel, while the others yielded weak gels. RD_F and RD_X formed strong Ca2+-mediated gels, comparable with commercial low-methoxylated citrus pectin. This study suggests that rose oil industry by-products could be successfully valorized and yield pectic polysaccharides with gelling properties, comparable with commercial citrus pectins. Full article
Show Figures

Graphical abstract

12 pages, 2807 KiB  
Article
Texture Analysis of Chinese Dried Noodles during Drying Based on Acoustic–Mechanical Detection Methods
Foods 2024, 13(2), 268; https://doi.org/10.3390/foods13020268 - 15 Jan 2024
Viewed by 129
Abstract
To better understand the textural transformation of Chinese dried noodles during the drying process, a convenient acoustic–force detection method was established. By comparing the breaking point, it was possible to determine the time-scale correlation between the force–displacement curves and acoustic spectrograms. The acoustic [...] Read more.
To better understand the textural transformation of Chinese dried noodles during the drying process, a convenient acoustic–force detection method was established. By comparing the breaking point, it was possible to determine the time-scale correlation between the force–displacement curves and acoustic spectrograms. The acoustic eigenvalues showed a consistent upward trend with the mechanical parameters during the drying process. With a wave crest reaching 152.8 dB and a signal maximum reaching 0.072, the structural stability of the dried noodles hardly induces a higher acoustic response. This suggests that the mechanical strength and rigidity of the dried noodles undergo minimal changes during this period. In comparison to the mechanical parameters, the acoustic eigenvalues accurately describe the changes in texture of dried noodles under various drying conditions, moreover, the sound threshold also provides a more effective response to the dried noodles’ structural strength threshold. Therefore, the acoustic detection method can be applied to assist the conventional mechanical measurement in the field of the texture evaluation of dried food. Full article
Show Figures

Graphical abstract

11 pages, 926 KiB  
Article
The Potential of Using Cochayuyo (Durvillaea incurvata) Extract Obtained by Ultrasound-Assisted Extraction to Fight against Aging-Related Diseases
Foods 2024, 13(2), 269; https://doi.org/10.3390/foods13020269 (registering DOI) - 15 Jan 2024
Viewed by 149
Abstract
The world’s population is in a demographical transition, with an increase in the number of older adults and prevalence of diseases related to aging. This study evaluated in vitro the potential of using Durvillaea incurvata extract (extracted using ultrasound-assisted extraction) to inhibit key [...] Read more.
The world’s population is in a demographical transition, with an increase in the number of older adults and prevalence of diseases related to aging. This study evaluated in vitro the potential of using Durvillaea incurvata extract (extracted using ultrasound-assisted extraction) to inhibit key enzymes associated with the development of age-related diseases. Our results show that an extract extracted via ultrasound-assisted extracted, as well as an extract conventional extracted from Durvillaea incurvata, presented antidiabetes potential by exhibiting inhibitory activity against α-glucosidase (91.8 ± 1.0% and 93.8 ± 0.3%, respectively, at 500 µg/mL) and α-amylase (42.2 ± 1.4% and 61.9 ± 0.9%, respectively, at 1500 µg/mL) enzymes related to starch digestion and postprandial glycemic response. Also, the extracts showed inhibitory activity against the enzymes acetylcholinesterase (51.5% and 50.8%, respectively, at 500 µg/mL) and butyrylcholinesterase (32.8% and 34.4%, respectively, at 0.5 mg/mL), the biomarkers associated with Alzheimer’s disease, and angiotensin-converting enzyme (98.7 ± 7.4% and 93.0 ± 3.4%, respectively, at 2.0 mg/mL), which is key in the regulation of vascular tone and blood pressure and helps to prevent the development of hypertension. In conclusion, the extract of Durvillaea incurvata obtained from ultrasound-assisted extraction has the potential to prevent the development of age-related pathologies such as diabetes, Alzheimer’s disease, and hypertension. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Figure 1

24 pages, 1780 KiB  
Review
Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit
Foods 2024, 13(2), 267; https://doi.org/10.3390/foods13020267 - 15 Jan 2024
Viewed by 221
Abstract
Peaches are among the most well-known fruits in the world due to their appealing taste and high nutritional value. Peach fruit, on the other hand, has a variety of postharvest quality issues like chilling injury symptoms, internal breakdown, weight loss, decay, shriveling, and [...] Read more.
Peaches are among the most well-known fruits in the world due to their appealing taste and high nutritional value. Peach fruit, on the other hand, has a variety of postharvest quality issues like chilling injury symptoms, internal breakdown, weight loss, decay, shriveling, and over-ripeness, which makes a challenging environment for industries and researchers to develop sophisticated strategies for fruit quality preservation and extending shelf life. All over the world, consumers prefer excellent-quality, high-nutritional-value, and long-lasting fresh fruits that are free of chemicals. An eco-friendly solution to this issue is the coating and filming of fresh produce with natural edible materials. The edible coating utilization eliminates the adulteration risk, presents fruit hygienically, and improves aesthetics. Coatings are used in a way that combines food chemistry and preservation technology. This review, therefore, examines a variety of natural coatings (proteins, lipids, polysaccharides, and composite) and their effects on the quality aspects of fresh peach fruit, as well as their advantages and mode of action. From this useful information, the processors could benefit in choosing the suitable edible coating material for a variety of fresh peach fruits and their application on a commercial scale. In addition, prospects of the application of natural coatings on peach fruit and gaps observed in the literature are identified. Full article
Show Figures

Figure 1

20 pages, 6287 KiB  
Article
Deciphering the Microbiological Mechanisms Underlying the Impact of Different Storage Conditions on Rice Grain Quality
Foods 2024, 13(2), 266; https://doi.org/10.3390/foods13020266 - 15 Jan 2024
Viewed by 195
Abstract
Different storage conditions can influence microbial community structure and metabolic functions, affecting rice grains’ quality. However, the microbiological mechanisms by which different storage conditions affect the quality of rice grains are not yet well understood. This study monitored the quality (the content of [...] Read more.
Different storage conditions can influence microbial community structure and metabolic functions, affecting rice grains’ quality. However, the microbiological mechanisms by which different storage conditions affect the quality of rice grains are not yet well understood. This study monitored the quality (the content of starch, protein, etc.) and microbial community structure of rice grains stored under different storage conditions with nitrogen gas atmosphere (RA: normal temperature, horizontal ventilation, RB: normal temperature, vertical ventilation, RC: quasi-low temperature, horizontal ventilation). The results revealed that the rice grains stored under condition RB exhibited significantly lower quality compared to condition RA and RC. In addition, under this condition, the highest relative abundance of Aspergillus (16.0%) and Penicillium (0.4%) and the highest levels of aflatoxin A (3.77 ± 0.07 μg/kg) and ochratoxin B1 (3.19 ± 0.05 μg/kg) were detected, which suggested a higher risk of fungal toxin contamination. Finally, co-occurrence network analysis was performed, and the results revealed that butyl 1,2-benzenedicarboxylate was negatively correlated (p < 0.05) with Moesziomyces and Alternaria. These findings will contribute to the knowledge base of rice storage management and guide the development of effective control measures against undesirable microbial activities. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

13 pages, 1449 KiB  
Article
Exploring a Sustainable Process for Polyphenol Extraction from Olive Leaves
Foods 2024, 13(2), 265; https://doi.org/10.3390/foods13020265 - 15 Jan 2024
Viewed by 212
Abstract
Olive leaves are residues from pruning and harvesting and are considered an environmental management problems. Interestingly, these residues contain high polyphenol concentrations, which can be used to treat chronic diseases. However, these compounds are a technological challenge due to their thermolability and reactivity [...] Read more.
Olive leaves are residues from pruning and harvesting and are considered an environmental management problems. Interestingly, these residues contain high polyphenol concentrations, which can be used to treat chronic diseases. However, these compounds are a technological challenge due to their thermolability and reactivity during extraction. Thus, this study assessed the use of pressurized liquid extraction (PLE) with green solvents like water-ethanol and water-glycerol mixtures (0–15%) at 50 °C and 70 °C to yield polyphenol-rich antioxidant extracts with reduced glucose and fructose content. The use of 30% ethanol at 70°C presented the highest polyphenol content (15.29 mg gallic acid equivalent/g dry weight) and antioxidant capacity, which was expressed as IC50 (half maximal inhibitory concentration): 5.49 mg/mL and oxygen radical absorbance capacity (ORAC): 1259 μmol Trolox equivalent/g dry weight, as well as lower sugar content (glucose: 3.75 mg/g dry weight, fructose: 5.68 mg/g dry weight) compared to water–glycerol mixtures. Interestingly, ethanol exhibits a higher degree of effectiveness in recovering flavanols, stilbenes and secoiridoids, while glycerol improves the extraction of phenolic acids and flavonols. Therefore, to enhance the efficiency of polyphenol recovery during the PLE process, it is necessary to consider its solvent composition and chemical structure. Full article
Show Figures

Figure 1

14 pages, 1728 KiB  
Article
The Difference between PC-Based and Immersive Virtual Reality Food Purchase Environments on Useability, Presence, and Physiological Responses
Foods 2024, 13(2), 264; https://doi.org/10.3390/foods13020264 - 15 Jan 2024
Viewed by 225
Abstract
Computer simulations used to study food purchasing behavior can be separated into low immersion virtual environments (LIVE), which use personal computers and standard monitors to display a scene, and high immersion virtual environments (HIVE) which use virtual reality technology such as head-mounted displays [...] Read more.
Computer simulations used to study food purchasing behavior can be separated into low immersion virtual environments (LIVE), which use personal computers and standard monitors to display a scene, and high immersion virtual environments (HIVE) which use virtual reality technology such as head-mounted displays to display a scene. These methods may differ in their ability to create feelings of presence or cybersickness that would influence the usefulness of these approaches. In this present study, thirty-one adults experienced a virtual supermarket or fast-food restaurant using a LIVE system or a HIVE system. Feelings of presence and cybersickness were measured using questionnaires or physiological responses (heart rate and electrodermal activity). The participants were also asked to rate their ability to complete the set task. The results of this study indicate that participants reported a higher sense of presence in the HIVE scenes as compared to the LIVE scenes (p < 0.05). The participant’s heart rate and electrodermal activity were significantly higher in the HIVE scene treatment when compared to the LIVE scene (p < 0.05). There was no difference in the participant’s ability to complete tasks in the different scenes. In addition, feelings of cybersickness were not different between the HIVE and LIVE scenes. Full article
(This article belongs to the Topic Consumer Behaviour and Healthy Food Consumption)
Show Figures

Figure 1

14 pages, 3896 KiB  
Article
Effect of Protein Content on Heat Stability of Reconstituted Milk Protein Concentrate under Controlled Shearing
Foods 2024, 13(2), 263; https://doi.org/10.3390/foods13020263 - 14 Jan 2024
Viewed by 465
Abstract
Milk protein concentrates (MPCs) possess significant potential for diverse applications in the food industry. However, their heat stability may be a limitation to achieving optimal functional performance. Shearing, an inherent process in food manufacturing, can also influence the functionality of proteins. The aim [...] Read more.
Milk protein concentrates (MPCs) possess significant potential for diverse applications in the food industry. However, their heat stability may be a limitation to achieving optimal functional performance. Shearing, an inherent process in food manufacturing, can also influence the functionality of proteins. The aim of this research was to examine the heat stability of reconstituted MPCs prepared at two protein concentrations (4% and 8% w/w protein) when subjected to varying levels of shearing (100, 1000, or 1500 s−1) during heating at 90 °C for 5 min or 121 °C for 2.6 min. While the impact of shear was relatively minor at 4% protein, it was more pronounced in 8% protein MPC suspensions, leading to a considerable decline in heat stability. An increase in protein concentration to 8% amplified protein interactions, intensified by shearing. This, in turn, resulted in comparatively higher aggregation at elevated temperatures and subsequently reduced the heat stability of the reconstituted MPCs. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

15 pages, 2012 KiB  
Article
Patterns of the Nutrients and Metabolites in Apostichopus japonicus Fermented by Bacillus natto and Their Ability to Alleviate Acute Alcohol Intoxication
Foods 2024, 13(2), 262; https://doi.org/10.3390/foods13020262 - 14 Jan 2024
Viewed by 316
Abstract
The aim of this study was to understand the changes in nutrient composition and differences in metabolites in Apostichopus japonicus fermented by Bacillus natto and their function in alleviating acute alcohol intoxication (AAI) through in vivo studies. The results showed no significant difference [...] Read more.
The aim of this study was to understand the changes in nutrient composition and differences in metabolites in Apostichopus japonicus fermented by Bacillus natto and their function in alleviating acute alcohol intoxication (AAI) through in vivo studies. The results showed no significant difference between the basic components of sea cucumber (SC) and fermented sea cucumber (FSC). The SC proteins were degraded after fermentation, and the amino acid content in FSC was significantly increased. The differentially abundant metabolites of SC and FSC were identified by LC-MS/MS. The contents of amino acid metabolites increased after fermentation, and arachidonic acid metabolism was promoted. The results demonstrated that FSC alleviated AAI by improving the activities of alcohol-metabolizing enzymes and antioxidant enzymes in the liver but did not alleviate the accumulation of triglycerides. Our results will provide beneficial information for the development and application of new products from FSC. Full article
(This article belongs to the Special Issue Valorization of Seafood Resources to Obtain High-Value Products)
Show Figures

Graphical abstract

12 pages, 2796 KiB  
Article
Effects of Endogenous Antioxidants in Camellia Oil on the Formation of 2-Monochloropropane-1, 3-diol Esters and 3-Monochloropropane-1,2-diol Esters during Thermal Processing
Foods 2024, 13(2), 261; https://doi.org/10.3390/foods13020261 - 14 Jan 2024
Viewed by 220
Abstract
2-Monochloropropane-1, 3-diol (2-MCPD) esters and 3-monochloropropane-1,2-diol (3-MCPD) esters, a class of substances potentially harmful to human health, are usually formed during the refining of vegetable oils under high temperature. The effects of endogenous antioxidants in vegetable oils on the formation of 2- and [...] Read more.
2-Monochloropropane-1, 3-diol (2-MCPD) esters and 3-monochloropropane-1,2-diol (3-MCPD) esters, a class of substances potentially harmful to human health, are usually formed during the refining of vegetable oils under high temperature. The effects of endogenous antioxidants in vegetable oils on the formation of 2- and 3-MCPD esters is still unknown. In this study, the effects of endogenous antioxidants (α-tocopherol, stigmasterol and squalene) on the formation of 2- and 3-MCPD esters in model thermal processing of camellia oil were investigated. The possible formation mechanism of 2- and 3-MCPD esters was also studied through the monitoring of acyloxonium ions, the intermediate ions of 2- and 3-MCPD esters formation, and free radicals by employing infrared spectra and electron paramagnetic resonance (EPR), respectively. The results indicated that the addition of α-tocopherol had either promoting or inhibiting effects on the formation of 2- and 3-MCPD esters, depending on the amount added. Stigmasterol inhibited the formation of 3-MCPD ester and 2-MCPD ester at low concentrations, while promoting their formation at high concentrations. Squalene exhibited a promotional effect on the formation of 3-MCPD ester and 2-MCPD ester, with an increased promotion effect as the amount of squalene added increased. The EPR results suggested that CCl3•, Lipid alkoxyl, N3• and SO3• formed during the processing of camellia oil, which may further mediate the formation of chlorpropanol esters. This study also inferred that squalene promotes the participation of the free radical in chlorpropanol ester formation. Full article
(This article belongs to the Special Issue Chemical Contaminants and Food Quality (Volume II))
Show Figures

Figure 1

15 pages, 3130 KiB  
Article
Efficient Production of High-Quality Infrared-Assisted Spouted Bed-Dried Areca taro Based on the Drying Temperature and Cutting Size Control
Foods 2024, 13(2), 260; https://doi.org/10.3390/foods13020260 - 14 Jan 2024
Viewed by 248
Abstract
The purpose of this study was to apply infrared-assisted spouted bed drying (IRSBD) technology for Areca taro drying and to investigate the effects of different parameters on its drying quality. Specifically, in order to determine the suitable conditions for IRSBD, the effects of [...] Read more.
The purpose of this study was to apply infrared-assisted spouted bed drying (IRSBD) technology for Areca taro drying and to investigate the effects of different parameters on its drying quality. Specifically, in order to determine the suitable conditions for IRSBD, the effects of different drying temperatures (45 °C, 50 °C, 55 °C, and 60 °C) and cutting sizes (6 × 6 × 6 mm, 8 × 8 × 8 mm, 10 × 10 × 10 mm, and 12 × 12 × 12 mm) on the drying characteristics, temperature uniformity, and quality properties (including colour, rehydration ratio, total phenol content, total flavonoid content, and antioxidant activity) of Areca taro were studied. The results showed that the optimal drying condition was the sample with a cutting size of 10 × 10 × 10 mm and drying at 50 °C, which yielded the dried sample with the best colour, highest total phenol and flavonoid contents, maximum antioxidant capacity, and rehydration ratio. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop