Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,160)

Search Parameters:
Journal = Atmosphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17304 KiB  
Article
Lightning-Ignited Wildfires and Associated Meteorological Conditions in Western Siberia for 2016–2021
Atmosphere 2024, 15(1), 106; https://doi.org/10.3390/atmos15010106 - 15 Jan 2024
Abstract
The analysis of the spatio-temporal variability of lightning-ignited wildfires and meteorological conditions preceding their occurrence from both dry lightning and lightning with precipitation in Western Siberia for the warm seasons (May–September) of 2016–2021 was carried out. In the Arctic zone, fires from lightnings [...] Read more.
The analysis of the spatio-temporal variability of lightning-ignited wildfires and meteorological conditions preceding their occurrence from both dry lightning and lightning with precipitation in Western Siberia for the warm seasons (May–September) of 2016–2021 was carried out. In the Arctic zone, fires from lightnings occur in most cases (83%) almost without precipitation (<2.5 mm/day), whereas in the forest and steppe zones the number of cases is less (81% and 74%, respectively). The most significant changes in meteorological conditions before the ignition were also revealed in the northern part 3–4 days before. Among all considered parameters, the most important role in the occurrence of dry lightning-ignited wildfires belongs to mid-tropospheric instability, lower-tropospheric dryness, and the moisture content of the top soil and surface floor layer. Moreover, in the Arctic zone of Western Siberia, more extreme (hotter and drier) meteorological conditions should be observed for the occurrence of ignition from lightning. The threshold values for the considered meteorological parameters were derived for our region for the first time. Obtained results can be used in the development of models for potential fire hazards prediction in various landscapes, which will have a practical application in various spheres of the national economy. Full article
(This article belongs to the Special Issue Extreme Weather Events in Siberia)
Show Figures

Figure 1

14 pages, 5836 KiB  
Article
Seasonal Variations in Anthropogenic and Natural Particles Induced by Rising CO2 Levels
Atmosphere 2024, 15(1), 105; https://doi.org/10.3390/atmos15010105 - 15 Jan 2024
Viewed by 114
Abstract
Using an aerosol–climate coupled model, this paper has investigated the changes in distributions of anthropogenic and natural particles due to 4 × CO2-induced global warming, under the low emission scenario of Representative Concentration Pathway 4.5 (RCP4.5). Special attention is paid to [...] Read more.
Using an aerosol–climate coupled model, this paper has investigated the changes in distributions of anthropogenic and natural particles due to 4 × CO2-induced global warming, under the low emission scenario of Representative Concentration Pathway 4.5 (RCP4.5). Special attention is paid to the seasonal variations of aerosol size modes. With rising CO2 levels, surface warming, and changes in atmospheric circulations and hydrologic cycles are found during both summer (JJA) and winter (DJF). For anthropogenic particles, changes in fine anthropogenic particulate matter (PM2.5, particles with diameters smaller than 2.5 μm) decrease over high-latitude regions and increase over the tropics in both DJF and JJA. Global mean column concentrations of PM2.5 decrease by approximately 0.19 mg m−2, and concentrations of coarse anthropogenic particles (CPM, particles with diameters larger than 2.5 μm) increase by 0.005 mg m−2 in JJA. Changes in anthropogenic particles in DJF are similar to those in JJA, but the magnitudes of maximum regional changes are much smaller than those in JJA. The coarse anthropogenic particles (CPM, particles with diameters larger than 2.5 μm) increase over northern Africa and the Arabian Peninsula during JJA, whereas changes in anthropogenic CPM during DJF are minimal. During both JJA and DJF, changes in anthropogenic CPM are about two orders of magnitude smaller than those of anthropogenic PM2.5. Enhanced wet deposition by large-scale precipitation under rising CO2-induced surface warming is the critical factor affecting changes in anthropogenic particles. For natural particles, the distribution of change in the natural PM2.5 burden is similar to that of natural CPM, but much larger than natural CPM during each season. Both natural PM2.5 and CPM burdens increase over northern Africa and the Arabian Peninsula during JJA, but decrease over most of the continental regions during DJF. Changes in surface wind speed, divergence/convergence of surface wind, and precipitation are primary reasons for the variation of natural particles. Full article
(This article belongs to the Special Issue Ozone Pollution and Effects in China)
Show Figures

Figure 1

15 pages, 6680 KiB  
Article
A Radar Echo Extrapolation Model Based on a Dual-Branch Encoder–Decoder and Spatiotemporal GRU
Atmosphere 2024, 15(1), 104; https://doi.org/10.3390/atmos15010104 - 14 Jan 2024
Viewed by 286
Abstract
Precipitation forecasting is an immensely significant aspect of meteorological prediction. Accurate weather predictions facilitate services in sectors such as transportation, agriculture, and tourism. In recent years, deep learning-based radar echo extrapolation techniques have found effective applications in precipitation forecasting. However, the ability of [...] Read more.
Precipitation forecasting is an immensely significant aspect of meteorological prediction. Accurate weather predictions facilitate services in sectors such as transportation, agriculture, and tourism. In recent years, deep learning-based radar echo extrapolation techniques have found effective applications in precipitation forecasting. However, the ability of existing methods to extract and characterize complex spatiotemporal features from radar echo images remains insufficient, resulting in suboptimal forecasting accuracy. This paper proposes a novel extrapolation algorithm based on a dual-branch encoder–decoder and spatiotemporal Gated Recurrent Unit. In this model, the dual-branch encoder–decoder structure independently encodes radar echo images in the temporal and spatial domains, thereby avoiding interference between spatiotemporal information. Additionally, we introduce a Multi-Scale Channel Attention Module (MSCAM) to learn global and local feature information from each encoder layer, thereby enhancing focus on radar image details. Furthermore, we propose a Spatiotemporal Attention Gated Recurrent Unit (STAGRU) that integrates attention mechanisms to handle temporal evolution and spatial relationships within radar data, enabling the extraction of spatiotemporal information from a broader receptive field. Experimental results demonstrate the model’s ability to accurately predict morphological changes and motion trajectories of radar images on real radar datasets, exhibiting superior performance compared to existing models in terms of various evaluation metrics. This study effectively improves the accuracy of precipitation forecasting in radar echo images, provides technical support for the short-range forecasting of precipitation, and has good application prospects. Full article
(This article belongs to the Special Issue Satellite Remote Sensing Applied in Atmosphere (2nd Edition))
Show Figures

Figure 1

25 pages, 15357 KiB  
Article
Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation
Atmosphere 2024, 15(1), 103; https://doi.org/10.3390/atmos15010103 - 14 Jan 2024
Viewed by 325
Abstract
Hourly solar radiation (SR) forecasting is a vital stage in the efficient deployment of solar energy management systems. Single and hybrid machine learning (ML) models have been predominantly applied for precise hourly SR predictions based on the pattern recognition of historical heterogeneous weather [...] Read more.
Hourly solar radiation (SR) forecasting is a vital stage in the efficient deployment of solar energy management systems. Single and hybrid machine learning (ML) models have been predominantly applied for precise hourly SR predictions based on the pattern recognition of historical heterogeneous weather data. However, the integration of ML models has not been fully investigated in terms of overcoming irregularities in weather data that may degrade the forecasting accuracy. This study investigated a strategy that highlights interactions that may exist between aggregated prediction values. In the first investigation stage, a comparative analysis was conducted utilizing three different ML models including support vector machine (SVM) regression, long short-term memory (LSTM), and multilayer artificial neural networks (MLANN) to provide insights into their relative strengths and weaknesses for SR forecasting. The comparison showed the proposed LSTM model had the greatest contribution to the overall prediction of six different SR profiles from numerous sites in Morocco. To validate the stability of the proposed LSTM, Taylor diagrams, violin plots, and Kruskal–Wallis (KW) tests were also utilized to determine the robustness of the model’s performance. Secondly, the analysis found coupling the models outputs with aggregation techniques can significantly improve the forecasting accuracy. Accordingly, a novel aggerated model that integrates the forecasting outputs of LSTM, SVM, MLANN with Sugeno λ-measure and Sugeno integral named (SLSM) was proposed. The proposed SLSM provides spatially and temporary interactions of information that are characterized by uncertainty, emphasizing the importance of the aggregation function in mitigating irregularities associated with SR data and achieving an hourly time scale forecasting accuracy with improvement of 11.7 W/m2. Full article
Show Figures

Figure 1

16 pages, 1200 KiB  
Article
Assessment of Atmospheric Pollution by Selected Elements and PAHs during 12-Month Active Biomonitoring of Terrestrial Mosses
Atmosphere 2024, 15(1), 102; https://doi.org/10.3390/atmos15010102 - 14 Jan 2024
Viewed by 361
Abstract
Biomonitoring studies are most often used in short-term study periods to quickly obtain information on the state/quality of the environment and its pollution levels. Performing long-term surveys involves a prolonged wait for the result and is therefore not often used and is rather [...] Read more.
Biomonitoring studies are most often used in short-term study periods to quickly obtain information on the state/quality of the environment and its pollution levels. Performing long-term surveys involves a prolonged wait for the result and is therefore not often used and is rather associated with classical air quality monitoring. The aim of this study was to evaluate atmospheric air pollution by selecting 16 elements and 16 polycyclic aromatic hydrocarbons conducted as part of a 12-month ‘moss-bag’ technique of an active biomonitoring method with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. All analytes were determined by inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography–mass spectrometry (GC-MS). As a result of the experiment, it was found that the concentrations of all elements increased with time of exposure. The total sum of them in D. polysetum moss was 30% and 60% more than in P. schreberi and S. fallax, respectively, which allows us to consider this species’ broader use in active biomonitoring. For PAHs analysis, the best biomonitor in time was P. schreberi, which accumulated 25% and 55% more than S. fallax and D. polysetum, respectively. In this one-year study, most organic compounds accumulated between 5 and 6 months of exposure, depending on the species. Given the low-cost nature of active biomonitoring, it should be concluded that mosses could be used in long-term monitoring of the quality of the atmospheric aerosol in terms of element and organic compound concentration in air. Full article
Show Figures

Figure 1

17 pages, 10055 KiB  
Article
Simulating the Wind Energy Distribution in the Coastal Hilly Area of the Jiaodong Peninsula Using the Weather Research and Forecasting Model
Atmosphere 2024, 15(1), 101; https://doi.org/10.3390/atmos15010101 - 13 Jan 2024
Viewed by 281
Abstract
This study simulated the wind energy density distribution in the Jiaodong Peninsula region using the Weather Research and Forecasting (WRF) Model. The impacts of different boundary-layer and near-surface parameterization schemes on the simulated wind speed and direction were investigated. The results indicate that [...] Read more.
This study simulated the wind energy density distribution in the Jiaodong Peninsula region using the Weather Research and Forecasting (WRF) Model. The impacts of different boundary-layer and near-surface parameterization schemes on the simulated wind speed and direction were investigated. The results indicate that the Yonsei University (YSU) scheme and the Quasi-Normal Scale Elimination (QNSE) scheme performed optimally for wind speed and wind direction. We also conducted a sensitivity test of the simulation results for atmospheric pressure, air temperature, and relative humidity. The statistical analysis showed that the YSU scheme performed optimally, while the MRF and BL schemes performed poorly. Following this, the wind energy distribution in the coastal hilly areas of the Jiaodong Peninsula was simulated using the YSU boundary-layer parameterization scheme. The modeled wind energy density in the mountainous and hilly areas of the Jiaodong Peninsula were higher than that in other regions. The wind energy density exhibits a seasonal variation, with the highest values in spring and early summer and the lowest in summer. In spring, the wind energy density over the Bohai Sea is higher than over the Yellow Sea, while the opposite trend is modeled in summer. Full article
(This article belongs to the Special Issue Land Surface Processes: Modeling and Observation)
Show Figures

Figure 1

19 pages, 16563 KiB  
Article
Quantifying the Impact of Urban Growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand
Atmosphere 2024, 15(1), 100; https://doi.org/10.3390/atmos15010100 - 12 Jan 2024
Viewed by 165
Abstract
The urban built environment, comprising structures, roads, and various facilities, plays a key role in the formation of urban heat islands, which inflict considerable damage upon human society. This phenomenon is particularly pronounced in urban areas characterized by the rapid growth and concentration [...] Read more.
The urban built environment, comprising structures, roads, and various facilities, plays a key role in the formation of urban heat islands, which inflict considerable damage upon human society. This phenomenon is particularly pronounced in urban areas characterized by the rapid growth and concentration of populations, a global trend, notably exemplified in megacities such as Bangkok, Thailand. The global trend of urbanization has witnessed unprecedented growth in recent decades, with cities transforming into megametropolises that profoundly impact changes in urban temperature, specifically the urban heat island (UHI) phenomenon induced by the rapid growth of urban areas. Elevated urban concentrations lead to increased city density, contributing to higher temperatures within the urban environment compared to the surrounding areas. The evolving land-use surface has assumed heightened significance due to urban development, necessitating accelerated efforts to mitigate urban heat islands. This study aims to quantify the influence of urban growth on urban surface temperature in Bangkok and its surrounding areas. The inverse relationship between urban temperature and land surface temperature (LST), coupled with urban area density, was examined using Landsat 5 and 8 satellite imagery. The analysis revealed a positive correlation between higher temperatures and levels of urban growth. Areas characterized by high-rise structures and economic activities experienced the most pronounced impact of the heat island phenomenon. The city exhibited a notable correlation between high density and high temperatures (high–high), signifying that increased density contributes to elevated temperatures due to heat dissipation (significant correlation of R2 = 0.8582). Conversely, low-temperature, low-density cities (low–low) with a dispersed layout demonstrated effective cooling of the surrounding area, resulting in a significant correlation with lower local temperatures (R2 = 0.7404). These findings provide valuable insights to assist governments and related agencies in expediting planning and policy development aimed at reducing heat in urban areas and steering sustainable urban development. Full article
(This article belongs to the Special Issue Urban Heat Islands and Global Warming (2nd Edition))
Show Figures

Figure 1

16 pages, 3979 KiB  
Article
Retrieval of Plateau Lake Water Surface Temperature from UAV Thermal Infrared Data
Atmosphere 2024, 15(1), 99; https://doi.org/10.3390/atmos15010099 - 12 Jan 2024
Viewed by 166
Abstract
The lake water surface temperature (LWST) is a critical parameter influencing lake ecosystem dynamics and addressing challenges posed by climate change. Traditional point measurement techniques exhibit limitations in providing comprehensive LWST data. However, the emergence of satellite remote sensing and unmanned aerial vehicle [...] Read more.
The lake water surface temperature (LWST) is a critical parameter influencing lake ecosystem dynamics and addressing challenges posed by climate change. Traditional point measurement techniques exhibit limitations in providing comprehensive LWST data. However, the emergence of satellite remote sensing and unmanned aerial vehicle (UAV) Thermal Infrared (TIR) technology has opened new possibilities. This study presents an approach for retrieving plateau lake LWST (p-LWST) from UAV TIR data. The UAV TIR dataset, obtained from the DJI Zenmuse H20T sensor, was stitched together to form an image of brightness temperature (BT). Atmospheric parameters for atmospheric correction were acquired by combining the UAV dataset with the ERA5 reanalysis data and MODTRAN5.2. Lake Water Surface Emissivity (LWSE) spectral curves were derived using 102 hand-portable FT-IR spectrometer (102F) measurements, along with the sensor’s spectral response function, to obtain the corresponding LWSE. Using estimated atmospheric parameters, LWSE, and UAV BT, the un-calibrated LWST was calculated through the TIR radiative transfer model. To validate the LWST retrieval accuracy, the FLIR Infrared Thermal Imager T610 and the Fluke 51-II contact thermometer were utilized to estimate on-point LWST. This on-point data was employed for cross-calibration and verification. In the study area, the p-LWST method retrieved LWST ranging from 288 K to 295 K over Erhai Lake in the plateau region, with a final retrieval accuracy of 0.89 K. Results demonstrate that the proposed p-LWST method is effective for LWST retrieval, offering technical and theoretical support for monitoring climate change in plateau lakes. Full article
Show Figures

Figure 1

15 pages, 7469 KiB  
Article
The Spatio-Temporal Distribution Characteristics of Carbon Dioxide Derived from the Trajectory Mapping of Ground Observation Network Data in Shanxi Province, One of China’s Largest Emission Regions
Atmosphere 2024, 15(1), 98; https://doi.org/10.3390/atmos15010098 - 12 Jan 2024
Viewed by 248
Abstract
In this study, the trajectory mapping domain-filling technology, which can provide more reliable statistical estimates of long-lived gas concentrations in a broader geographical area based on limited station data, is used to map the CO2 concentration data of six ground observation stations [...] Read more.
In this study, the trajectory mapping domain-filling technology, which can provide more reliable statistical estimates of long-lived gas concentrations in a broader geographical area based on limited station data, is used to map the CO2 concentration data of six ground observation stations to the entire Shanxi Province. The technology combines a dynamical model of the atmosphere with trace gas observations, combining forward and backward trajectories to greatly expand the information on long-lived CO2 gas concentrations over a trajectory path. The mapped results show good agreement with the observation results, which reveals the generalizability of the trajectory mapping domain-filling technology. The results show that the spatio-temporal distribution characteristics of CO2 concentration in the entire Shanxi region is significant: during the five years, the provincial average CO2 concentration exhibits an overall increasing trend. The CO2 concentration increases from the north to the south across the province. Influenced by the economic growth rate and COVID-19, there are differences in the annual variation characteristics of the CO2 concentration across the entire province, with the highest year-on-year growth in 2019 and a year-on-year decrease in 2020. The increasing rate of the CO2 concentration in the northern low-value areas is faster than that in the southern high-value areas. Overall, there is a decreasing trend in the CO2 concentration growth from the north to the south in the entire province. There are seasonal differences in the CO2 concentration distribution across the entire province. The CO2 concentration and amplitude are higher in autumn and winter than they are in spring and summer. This study can provide scientific support and methodological reference for the spatio-temporal distribution characteristics analysis of GHGs at the provincial–regional scale, as well as at the national and global scales. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 2019 KiB  
Review
Light-Duty Vehicle Brake Emission Factors
Atmosphere 2024, 15(1), 97; https://doi.org/10.3390/atmos15010097 - 11 Jan 2024
Viewed by 420
Abstract
Particulate Matter (PM) air pollution has been linked to major adverse health effects. Road transport still contributes significantly to ambient PM concentrations, but mainly due to the non-exhaust emissions from vehicles. For the first time worldwide, limits for non-exhaust emissions have been proposed [...] Read more.
Particulate Matter (PM) air pollution has been linked to major adverse health effects. Road transport still contributes significantly to ambient PM concentrations, but mainly due to the non-exhaust emissions from vehicles. For the first time worldwide, limits for non-exhaust emissions have been proposed by the European Union for the upcoming Euro 7 step. For these reasons, interest in brake emissions has increased in the past few years. Realistic emission factors are necessary to accurately calculate the contribution of brake emissions to air pollution but also to estimate the emissions reduction potential of new or existing technologies and improved brake formulations. This paper reviews emission factors from light-duty vehicles reported in the literature, with a focus on those that followed the recently introduced Global Technical Regulation (GTR 24) methodology on brakes in light-duty vehicles. Reduction efficiencies of non-asbestos organic (NAO) pads, brake dust filters, ceramic discs, coated discs, and regenerative braking are also discussed. Finally, the emission factors are compared with roadside measurements of brake emissions and emission inventories worldwide. The findings of this study can be used as an input in emission inventories to estimate the contribution of brakes to air pollution. Full article
Show Figures

Figure 1

19 pages, 16138 KiB  
Article
Synoptic-Scale Wildland Fire Weather Conditions in Mexico
Atmosphere 2024, 15(1), 96; https://doi.org/10.3390/atmos15010096 - 11 Jan 2024
Viewed by 273
Abstract
Future climate change is expected to increase the risk and severity of wildland fires in tropical regions. Synoptic-scale fire weather conditions in Mexico were carefully analyzed using 20 years of satellite hotspot and rainfall data, hourly weather data, and various climate data. Fire [...] Read more.
Future climate change is expected to increase the risk and severity of wildland fires in tropical regions. Synoptic-scale fire weather conditions in Mexico were carefully analyzed using 20 years of satellite hotspot and rainfall data, hourly weather data, and various climate data. Fire analysis results showed that eighty-four percent of all fires in Mexico occurred south of 22° N. Southwest Mexico (SWM, N < 22°, 94–106° W) and Southeast Mexico (SEM, N < 22°, 86–94° W), account for 50% and 34% of all fires in Mexico. Synoptic-scale analysis results using hourly data showed that westerly wind sea breezes from the Pacific Ocean blow toward the coastal land areas of the SWM while easterly wind sea breezes from the Caribbean blow into the SEM. The most sensitive weather parameters were “relative humidity” for the SWM and “temperature” for the SEM. The fire-related indices selected were “precipitable water vapor anomaly” for the SWM and “temperature anomaly” for the SEM. The SWM fire index suggests that future fires will depend on dryness, while the SEM fire index suggests that future fires will depend on temperature trends. I do hope that this paper will improve local fire forecasts and help analyze future fire trends under global warming in Mexico. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 1712 KiB  
Article
Effect of Heating Emissions on the Fractal Size Distribution of Atmospheric Particle Concentrations
Atmosphere 2024, 15(1), 95; https://doi.org/10.3390/atmos15010095 - 11 Jan 2024
Viewed by 214
Abstract
Excessive particle concentrations during heating periods, which greatly affect people’s physical and mental health and their normal lives, continue to be a concern. It is more practical to understand and analyze the relationship between the fractal dimension and particle size concentration distribution of [...] Read more.
Excessive particle concentrations during heating periods, which greatly affect people’s physical and mental health and their normal lives, continue to be a concern. It is more practical to understand and analyze the relationship between the fractal dimension and particle size concentration distribution of atmospheric particulate matter before and after adjusting heating energy consumption types. The data discussed and analyzed in this paper were collected by monitoring stations and measured from 2016 to 2018 in Xi’an. The data include fractal dimension and particle size concentration changes in the atmospheric particulate matter before and after adjusting the heating energy consumption types. The results indicate that adjusting the heating energy consumption types has a significant impact on particulate matter. The average concentration of PM2.5 decreased by 26.4 μg/m3. The average concentration of PM10 decreased by 31.8 μg/m3. At the same time, the different particle sizes showed a downward trend. The particles ranging from 0.265 to 0.475 μm demonstrated the maximum decrease, which was 8.80%. The heating period in Xi’an mainly involves particles ranging from 0 to 0.475 μm. The fractal dimensions of the atmospheric particulate matter before and after adjusting the heating energy consumption types were 4.809 and 3.397, respectively. After adjusting the heating energy consumption types, the fractal dimension decreased by 1.412. At that time, the proportions of particle sizes that were less than 1.0 μm, 2.0 μm, and 2.5 μm decreased by 1.467%, 0.604%, and 0.424%, respectively. This paper provides new methods and a reference value for the distribution and effective control of atmospheric particulate matter by adjusting heating energy consumption types. Full article
Show Figures

Figure 1

18 pages, 9663 KiB  
Article
Precipitation and Moisture Transport of the 2021 Shimokita Heavy Precipitation: A Transformed Extratropical Cyclone from Typhoon#9
Atmosphere 2024, 15(1), 94; https://doi.org/10.3390/atmos15010094 - 11 Jan 2024
Viewed by 229
Abstract
This study examines the heavy rainfall event that occurred in the Shimokita Peninsula, Japan, on 9–10 August 2021, resulting from an extra-tropical cyclone that developed from Typhoon#9 (EC9). The objective of this study is to elucidate the relationship between moisture transport and heavy [...] Read more.
This study examines the heavy rainfall event that occurred in the Shimokita Peninsula, Japan, on 9–10 August 2021, resulting from an extra-tropical cyclone that developed from Typhoon#9 (EC9). The objective of this study is to elucidate the relationship between moisture transport and heavy rainfall and to verify the role of EC9. The authors created intensive hourly precipitation data over the Aomori Prefecture and analyzed them together with moisture fields. In most locations where the landslide disaster occurred, there were two precipitation peaks: at 9 UTC and 18 UTC on 9 August. The wind shear was strong from the lower to the upper troposphere with easterly winds in the lower troposphere and warm moist air from south for the first peak. A strong horizontal gradient of equivalent potential temperature, a northerly in lower troposphere, and moisture convergence over Shimokita Peninsula indicate the existence of the stationary front for the latter peak (18 UTC). The heavy precipitation and moisture convergence that caused the Shimokita event were identified by the stationary front of EC9 around the latter peak (15 UTC of 9th–06 UTC of 10 August). The precipitation distribution, which has a precipitation peak northeast of the EC center, is a typical typhoon-turned extratropical cyclone (EC) precipitation distribution. Full article
Show Figures

Figure 1

16 pages, 11766 KiB  
Article
Evaluation of Daily Temperature Extremes in the ECMWF Operational Weather Forecasts and ERA5 Reanalysis
Atmosphere 2024, 15(1), 93; https://doi.org/10.3390/atmos15010093 - 11 Jan 2024
Viewed by 198
Abstract
In weather forecasting and climate monitoring, daily maximum and minimum air temperatures (TMAX and TMIN) are fundamental for operational and research purposes, from early warning of extreme events to climate change studies. This study provides an integrated evaluation of TMAX and TMIN from [...] Read more.
In weather forecasting and climate monitoring, daily maximum and minimum air temperatures (TMAX and TMIN) are fundamental for operational and research purposes, from early warning of extreme events to climate change studies. This study provides an integrated evaluation of TMAX and TMIN from two European Centre for Medium-range Weather Forecasts (ECMWF) products: ERA5 reanalysis (1980–2019) and operational weather forecasts (2017–2021). Both products are evaluated using in situ observations from the Global Historical Climatology Network (GHCN). While the analyses span globally, emphasis is given to four key regions: Europe, East and West United States, and Australia. Results reveal a general underestimation of TMAX and overestimation of TMIN in both operational forecasts and ERA5, highlighting the limitation of the ECMWF model in estimating the amplitude of the diurnal cycle of air temperature. ERA5′s accuracy has improved over the past decade, due to enhanced constrain of land–atmosphere analysis streaming from more and higher-quality satellite data. Furthermore, ERA5 outperforms one-day-ahead weather forecasts, indicating that non-real-time dependent studies should rely on ERA5 instead of real-time operational forecasts. This study underscores the importance of ongoing research in model and data assimilation, considering the relevance of daily temperature extremes forecasting and reanalysis for operational meteorology and climate monitoring. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Observations, Modeling, and Impacts)
Show Figures

Figure 1

13 pages, 4097 KiB  
Article
A Method for the Ambient Equivalent Dose Estimation in a Wide Range of Altitudes during SEP and GLE Events
Atmosphere 2024, 15(1), 92; https://doi.org/10.3390/atmos15010092 - 10 Jan 2024
Viewed by 174
Abstract
The paper considers the modeling of proton transport through the Earth’s atmosphere during several SEP events (12 August 1989, 23 March 1991, and 8 November 2000), as well as during the GLE73 event. Solar sources and interplanetary medium conditions during these events are [...] Read more.
The paper considers the modeling of proton transport through the Earth’s atmosphere during several SEP events (12 August 1989, 23 March 1991, and 8 November 2000), as well as during the GLE73 event. Solar sources and interplanetary medium conditions during these events are described in detail. Calculations are carried out using own model implemented with GEANT4. As the main results, quantitative estimates of the calculated ambient dose equivalent for altitudes in a wide range (also including civil aircraft flight altitudes of 10–11 km) for the geomagnetic cutoff rigidity values Rc = 0.13 GV are given. Full article
(This article belongs to the Special Issue Novel Insights into the Effects of Space Weather on Human Health)
Show Figures

Figure 1

Back to TopTop