Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,338)

Search Parameters:
Journal = Crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6577 KiB  
Article
Synthesis and Characterization of Indium-Doped SnO2-Based Impedance Spectroscopy Sensor for Real-Time Humidity Sensing Applications
Crystals 2024, 14(1), 82; https://doi.org/10.3390/cryst14010082 - 15 Jan 2024
Viewed by 107
Abstract
Metallic transition-metal dichalcogenides are emerging as promising electrode materials for applications such as 2D electronic devices owing to their good electrical conductivity. In this study, a high-performance humidity sensor based on NbTe2 electrode material and an indium-doped SnO2 thin film sensing [...] Read more.
Metallic transition-metal dichalcogenides are emerging as promising electrode materials for applications such as 2D electronic devices owing to their good electrical conductivity. In this study, a high-performance humidity sensor based on NbTe2 electrode material and an indium-doped SnO2 thin film sensing layer was fabricated using a pulsed laser deposition system. The morphology, structural, elemental compositions, and electrical properties of the as-deposited samples were characterized. Additionally, the humidity sensing response of the fabricated sensor with In-doped SnO2 (8:92 wt%) sensing film was evaluated in a wide range of relative humidity at room temperature. The results demonstrated that the humidity sensor based on In-doped SnO2 exhibited a high sensitivity of 103.1 Ω/%RH, fast response and recovery times, a low hysteresis value, good linearity, and repeatability. In addition, the sensor had good long-term stability, with a variation in impedance of less than 3%. The results indicated that the humidity sensor could be suitable for practical humidity sensing applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 7332 KiB  
Article
Microstructural and Hall–Petch Analysis of Additively Manufactured Ferritic Alloy Using 2507 Duplex Stainless Steel Powder
Crystals 2024, 14(1), 81; https://doi.org/10.3390/cryst14010081 - 15 Jan 2024
Viewed by 277
Abstract
The powder bed fusion–laser beam (PBF-LB) process, a method of additive manufacturing (AM), was used to print duplex stainless steel (DSS) using commercial-grade 2507 powders. While conventionally processed DSS has a two-phase microstructure consisting of 50% austenite and 50% ferrite, the PBF-LB-printed 2507 [...] Read more.
The powder bed fusion–laser beam (PBF-LB) process, a method of additive manufacturing (AM), was used to print duplex stainless steel (DSS) using commercial-grade 2507 powders. While conventionally processed DSS has a two-phase microstructure consisting of 50% austenite and 50% ferrite, the PBF-LB-printed 2507 alloy was nearly 100% ferrite. Optimal processing conditions that minimized porosity were determined to be 290 W laser power and 1000 mm/s scan speed, and grain size, texture, and phases were characterized as a function of laser power and scan speed. Grain size increased with increasing laser power but decreased with increasing scan speed. A <100> texture diminished with increasing scan speed from 1000 mm/s to 1400 mm/s. No austenite phase was detected. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) characterization revealed nanoscale chromium nitride precipitates in the ferritic matrix (incoherent hexagonal close-packed (HCP) precipitates at grain boundaries and coherent body-centered cubic (BCC) precipitates within the grains) and a high density of tangled dislocations. Tensile tests of as-printed alloys showed a yield strength of 570 MPa, an ultimate tensile strength of 756 MPa, and an elongation to failure of 10%. The tensile properties were analyzed based on the observed microstructure considering grain size, nanoscale precipitates, and the high density of dislocations. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

22 pages, 8868 KiB  
Article
Gemological and Chemical Characterization of Gem-Quality Titanite from Morocco
Crystals 2024, 14(1), 80; https://doi.org/10.3390/cryst14010080 - 14 Jan 2024
Viewed by 261
Abstract
Titanite is a widespread accessory mineral in igneous, metamorphic, and hydrothermal rocks, but few comply with gem-grade requirements. Previous studies on Moroccan titanite focused on elementary composition and U-Pb dating. In this study, two gem-grade titanites (MA-1 and MA-2) from the Moroccan Central [...] Read more.
Titanite is a widespread accessory mineral in igneous, metamorphic, and hydrothermal rocks, but few comply with gem-grade requirements. Previous studies on Moroccan titanite focused on elementary composition and U-Pb dating. In this study, two gem-grade titanites (MA-1 and MA-2) from the Moroccan Central High Atlas were investigated through gemological and chemical studies, including infrared spectrum, Raman spectrum, SEM-EDS, and LA-ICP-MS. Two titanite samples are yellow, transparent–translucent with a greasy luster, 3.5 and 2.5 mm long. MA-1 and MA-2 have similar gemological properties, the refractive index (RI) is beyond the range of the refractometer (>1.78), the specific gravity (SG) values fall in the range of 3.52~3.54 and both are inert to short-wave and long-wave UV radiation. The spectral characteristics have high consistency with the RRUFF database. The major elements’ composition shows a negative correlation between Al, Fe, V, and Ti, suggesting the titanites underwent substitutions such as (Al, Fe3+) + (F, OH) ↔ Ti + O. The titanite samples, characterized by a low abundance of REE (802~4088 ppm) and enriched in LREE, exhibit positive Eu (δEu: 1.53~7.79) and Ce (δCe: 1.08~1.33) anomalies, indicating their formation in a hydrothermal environment with low oxygen fugacity. The 238U/206Pb and 207Pb/206Pb ratios of the titanites yield lower intercept ages of 152.6 ± 2.2 and 151.4 ± 5.3 Ma (1s), consistent with their weighted average 206Pb/238U ages of 152.3 ± 2.0 and 150.7 ± 3.2 Ma (1s) respectively. The results of U-Pb dating are matched with the second main magmatic activities in the High Atlas intracontinental belt of Morocco during the Mesozoic to Cenozoic period. Moreover, the two titanite samples have almost no radiational damage. All the results show that the titanite from High Atlas, Morocco, has the potential to be a reference material for LA-ICP-MS U–Pb dating, but further experiments are needed to be sure. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

13 pages, 4301 KiB  
Article
A Self-Powered Broadband Photodetector with High Photocurrent Based on Ferroelectric Thin Film Using Energy Band Structure Design
Crystals 2024, 14(1), 79; https://doi.org/10.3390/cryst14010079 - 13 Jan 2024
Viewed by 337
Abstract
Self-powered photodetectors have the advantages of high sensitivity, sustainability, and small size and have become a research hotspot in advanced optoelectronic systems. However, the low output photocurrent density seriously hinders the practical application of ferroelectric self-powered photodetectors. Herein, the high-efficiency photoelectric detection performance [...] Read more.
Self-powered photodetectors have the advantages of high sensitivity, sustainability, and small size and have become a research hotspot in advanced optoelectronic systems. However, the low output photocurrent density seriously hinders the practical application of ferroelectric self-powered photodetectors. Herein, the high-efficiency photoelectric detection performance of the Bi1-xHoxFeO3 ferroelectric self-powered photodetector is realized by doping Ho. The responsivity (R) and detectivity (D*) can reach 0.0159 A/W and 1.94 × 1011 Jones under monochromatic light with a wavelength of 900 nm. Meanwhile, the R and D* can reach 0.022 A/W and 2.65 × 1011 Jones under sunlight. These excellent photodetection performances are attributed to the high short-circuit current density (Jsc). When the Ho content is 6%, the output photocurrent reaches up to 0.81 mA/cm2. The systematic structure and photo-electric characteristic analysis suggest that the decrease in the band gap leads to the generation of a larger photocurrent while the ferroelectric polarization is reduced slightly. This work provides a new way to obtain high-performance self-powered photodetectors. Full article
(This article belongs to the Special Issue Ferroelectric and Multiferroic Thin Films)
Show Figures

Figure 1

14 pages, 12717 KiB  
Article
Analysis of the Effect of Copper Doping on the Optoelectronic Properties of Indium Oxide Thin Films and the Thermoelectric Properties of an In2O3/Pt Thermocouple
Crystals 2024, 14(1), 78; https://doi.org/10.3390/cryst14010078 - 13 Jan 2024
Viewed by 308
Abstract
The detection and real-time monitoring of temperature parameters are important, and indium oxide-based thin film thermocouples can be integrated on the surface of heaters because they operate normally under harsh conditions and provide accurate online temperature monitoring. The higher stability and appropriate optical [...] Read more.
The detection and real-time monitoring of temperature parameters are important, and indium oxide-based thin film thermocouples can be integrated on the surface of heaters because they operate normally under harsh conditions and provide accurate online temperature monitoring. The higher stability and appropriate optical and electrical properties of In2O3 make it very suitable as an electrode material for thermocouple sensors. This work demonstrates that copper doping can alter the optical and electrical properties of In2O3 films and regulate the output performance of thermocouples. Copper-doped In2O3 thin films were prepared using the magnetron co-sputtering method. The doping concentration of Cu was controlled using direct current (DC) power. An In2O3/Pt thermocouple sensor was prepared, and the optoelectronic and thermocouple properties were adjusted by changing the copper doping content. The thickness valve of the thin film sample was 300 nm. The results of the X-ray diffraction suggested that the structure of the doped In2O3 thin films was cubic. The results of the energy-dispersive X-ray analysis revealed that Cu was doped into the In2O3 thin films. All deposited films were n-type semiconductor materials according to Hall effect testing. The 4.09 at% Cu-doped thin films possessed the highest resistivity (30.2 × 10−3 Ω·cm), a larger carrier concentration (3.72 × 1020 cm−3), and the lowest carrier mobility (0.56 cm2V−1s−1). The optical band gap decreased from 3.76 to 2.71 eV with an increase in the doping concentration, and the transmittance of the film significantly reduced. When the DC power was increased, the variation range of Seebeck coefficient for the In2O3/Pt thermocouple was 152.1–170.5 μV/°C, and the range of thermal output value was 91.4–102.4 mV. Full article
(This article belongs to the Special Issue Wide-Bandgap Semiconductor Materials, Devices and Systems)
Show Figures

Figure 1

26 pages, 4510 KiB  
Review
Crystal Engineering of Hydrogen Bonding for Direct Air Capture of CO2: A Quantum Crystallography Perspective
Crystals 2024, 14(1), 77; https://doi.org/10.3390/cryst14010077 - 13 Jan 2024
Viewed by 177
Abstract
Rising atmospheric CO2 levels demand efficient and sustainable carbon capture solutions. Direct air capture (DAC) via crystallizing hydrogen-bonded frameworks such as carbonate salts has emerged as a promising approach. This review explores the potential of crystal engineering, in tandem with advanced quantum [...] Read more.
Rising atmospheric CO2 levels demand efficient and sustainable carbon capture solutions. Direct air capture (DAC) via crystallizing hydrogen-bonded frameworks such as carbonate salts has emerged as a promising approach. This review explores the potential of crystal engineering, in tandem with advanced quantum crystallography techniques and computational modeling, to unlock the full potential of DAC materials. We examine the critical role of hydrogen bonding and other noncovalent interactions within a family of bis-guanidines that governs the formation of carbonate salts with high CO2 capture capacity and low regeneration energies for utilization. Quantum crystallography and charge density analysis prove instrumental in elucidating these interactions. A case study of a highly insoluble carbonate salt of a 2,6-pyridine-bis-(iminoguanidine) exemplifies the effectiveness of these approaches. However, challenges remain in the systematic and precise determination of hydrogen atom positions and atomic displacement parameters within DAC materials using quantum crystallography, and limitations persist in the accuracy of current energy estimation models for hydrogen bonding interactions. Future directions lie in exploring diverse functional groups, designing advanced hydrogen-bonded frameworks, and seamlessly integrating experimental and computational modeling with machine learning. This synergistic approach promises to propel the design and optimization of DAC materials, paving the way for a more sustainable future. Full article
Show Figures

Figure 1

17 pages, 4883 KiB  
Article
Cobalt(II) Paddle-Wheel Complex with 3,5-Di(tert-butyl)-4-hydroxybenzoate Bridges: DFT and ab initio Calculations, Magnetic Dilution, and Magnetic Properties
Crystals 2024, 14(1), 76; https://doi.org/10.3390/cryst14010076 - 13 Jan 2024
Viewed by 253
Abstract
A new binuclear "paddle-wheel" complex, [Co2(bhbz)4(EtOH)2]·4EtOH (1, Hbhbz-3,5-di(tert-butyl)-4-hydroxybenzoic acid); an isostructural zinc complex (2); a and magnetically diluted sample of [Zn1.93Co0.07(bhbz)4(EtOH)2]·4EtOH (3 [...] Read more.
A new binuclear "paddle-wheel" complex, [Co2(bhbz)4(EtOH)2]·4EtOH (1, Hbhbz-3,5-di(tert-butyl)-4-hydroxybenzoic acid); an isostructural zinc complex (2); a and magnetically diluted sample of [Zn1.93Co0.07(bhbz)4(EtOH)2]·4EtOH (3) were obtained. Molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. DFT calculations for 1 indicate strong Co-Co antiferromagnetic exchange interactions in the binuclear fragment. It was shown that when one paramagnetic ion in the binuclear molecule is replaced by a diamagnetic zinc(II) ion, the remaining cobalt(II) ion can be considered as an isolated center with magnetic anisotropy, the parameters of which are determined by ab initio calculations. Magnetic properties for samples 1 and 3 were investigated and analyzed in detail. Full article
(This article belongs to the Special Issue Fabrication and Properties of Magnetic Materials)
Show Figures

Figure 1

12 pages, 4325 KiB  
Article
Hot-Electron Microwave Noise and Energy Relaxation in (Be)MgZnO/ZnO Heterostructures
Crystals 2024, 14(1), 75; https://doi.org/10.3390/cryst14010075 - 12 Jan 2024
Viewed by 217
Abstract
Pulsed hot-electron microwave noise measurements of the (Be)MgZnO/ZnO heterostructures are presented in this work. The heterostructures of different barrier thicknesses and different bulk electron densities in ZnO layer are compared. Capacitance–voltage (C–V) measurements reveal the decrease in the two-dimensional electron gas (2DEG) peak [...] Read more.
Pulsed hot-electron microwave noise measurements of the (Be)MgZnO/ZnO heterostructures are presented in this work. The heterostructures of different barrier thicknesses and different bulk electron densities in ZnO layer are compared. Capacitance–voltage (C–V) measurements reveal the decrease in the two-dimensional electron gas (2DEG) peak in electron density profile at the Zn-polar BeMgZnO/ZnO interface as the BeMgZnO barrier layer thickness decreases. For thin-barrier heterostructures, the peak disappears and only the bulk electron density is resolved in C–V measurements. The excess noise temperature at ∼10 GHz in thick-barrier heterostructures is noticeably higher (∼10 times) compared to thin-barrier heterostructures, which is attributed to the strong noise source in the contacts of the former. In the case of thin-barrier heterostructures, at electric fields above ∼10 kV/cm and electron density 1×1017cm3, strong noise source is resolved, which was also observed earlier in the Ga-doped ZnO films due to the formation of self-supporting high-field domains. However, for the low electron densities (≲6 ×1016 cm3), the aforementioned noise source is not observed, which suggests the importance of a deep ZnO/GaN interface with 2DEG for power dissipation. The hot-electron temperature dependence on the dissipated power of those low-electron-density heterostructures is similar to that of O-polar ZnO/MgZnO. The estimated electron energy relaxation time in ZnO/MgZnO is ∼0.45 ps ± 0.05 ps at dissipated electrical power per electron of ∼0.1 nW/el and approaches ∼0.1 ps as the dissipated power is increased above ∼10 nW/el. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

11 pages, 3171 KiB  
Article
Segregation of Phosphorus and Silicon at the Grain Boundary in Bcc Iron via Machine-Learned Force Fields
Crystals 2024, 14(1), 74; https://doi.org/10.3390/cryst14010074 - 12 Jan 2024
Viewed by 222
Abstract
The study of the effects of impurity on grain boundaries is a critical aspect of materials science, particularly when it comes to understanding and controlling the properties of materials for specific applications. One of the related key issues is the segregation preference of [...] Read more.
The study of the effects of impurity on grain boundaries is a critical aspect of materials science, particularly when it comes to understanding and controlling the properties of materials for specific applications. One of the related key issues is the segregation preference of impurity atoms in the grain boundary region. In this paper, we employed the on-the-fly machine learning to generate force fields, which were subsequently used to calculate the segregation energies of phosphorus and silicon in bcc iron containing the ∑5(310)[001] grain boundary. The generated force fields were successfully benchmarked using ab initio data. Our further calculations considered impurity atoms at a number of possible interstitial and substitutional segregation sites. Our predictions of the preferred sites agree with the experimental observations. Planar concentration of impurity atoms affects the segregation energy and, moreover, can change the preferred segregation sites. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 3590 KiB  
Article
Study of Multi-Channel Mode-Division Multiplexing Based on a Chalcogenide-Lithium Niobate Platform
Crystals 2024, 14(1), 73; https://doi.org/10.3390/cryst14010073 - 11 Jan 2024
Viewed by 244
Abstract
A multi-channel mode-division multiplexing based on a chalcogenide-lithium niobate platform using chalcogenide films with adjustable refractive index is proposed, with the aim of overcoming issues with narrow bandwidth and large crosstalk in conventional multiplexers. An asymmetric directional coupler, employing chalcogenide-based thin-film modulation, was [...] Read more.
A multi-channel mode-division multiplexing based on a chalcogenide-lithium niobate platform using chalcogenide films with adjustable refractive index is proposed, with the aim of overcoming issues with narrow bandwidth and large crosstalk in conventional multiplexers. An asymmetric directional coupler, employing chalcogenide-based thin-film modulation, was designed to realize the multiplexing and separation of TE1, TE2, and TE3 modes. Simulations show that the device is capable of obtaining an insertion loss of between 0.03 dB and 0.7 dB and a crosstalk of between −21.66 dB and −28.71 dB at 1550 nm. The crosstalk of the TE1, TE2, and TE3 modes is below −20.1 dB when accessing the waveguide output port in the 1500–1600 nm band. The proposed multiplexer is a promising approach to enhance the transmission capability of thin-film lithium-niobate-integrated optical paths. Full article
(This article belongs to the Topic Optoelectronic Materials, 2nd Volume)
Show Figures

Figure 1

14 pages, 13856 KiB  
Article
Numerical Simulation of CdTe Crystal Growth Using the Vertical Gradient Freeze Technique Assisted by Axial Low-Frequency Oscillations of the Melt
Crystals 2024, 14(1), 72; https://doi.org/10.3390/cryst14010072 - 11 Jan 2024
Viewed by 191
Abstract
The problem of intensification of the melt crystal growth process has been analyzed using CdTe as an actual material. Numerical simulation of 100 mm diameter CdTe crystal growth using the VGF technique has been carried out. The heat–mass transfer was controlled by introducing [...] Read more.
The problem of intensification of the melt crystal growth process has been analyzed using CdTe as an actual material. Numerical simulation of 100 mm diameter CdTe crystal growth using the VGF technique has been carried out. The heat–mass transfer was controlled by introducing low-frequency oscillating baffle into the melt, which is a so-called axial vibrational control (AVC) technique. The baffle configuration has been optimized to destroy solid “tails”, which were formed near the crucible walls at high cooling rates due to the low thermoconductivity and the corresponding latent heat. Analysis of CdTe homogeneity range showed that during fast crystal cooling, Te micro precipitations were formed, resulting from the decay of oversaturated Cd-rich nonstoichiometric solid solution during the Bridgman crystal growth technique. After full crystallization, a VGF-grown CdTe crystal stays inside the phase field of the high-temperature wurtzite polymorph. This makes it possible to go through the polymorph transition without Te micro-precipitating using the advantages of the VGF-specific feature of very slow cooling. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

9 pages, 2237 KiB  
Article
The Solid-Phase Transition of Carbapenem CS-023 Polymorphs and the Change in Helicity Observed in the Transition
Crystals 2024, 14(1), 71; https://doi.org/10.3390/cryst14010071 - 11 Jan 2024
Viewed by 169
Abstract
Anti-solvent crystallization of carbapenem CS-023 was performed at 25 °C. The following results were obtained: (1) A solvate crystal, Form A (5/2 Ethanol·1/2 H2O), was recovered from 80 v/v% ethanol solution; (2) Form A transformed to Form H [...] Read more.
Anti-solvent crystallization of carbapenem CS-023 was performed at 25 °C. The following results were obtained: (1) A solvate crystal, Form A (5/2 Ethanol·1/2 H2O), was recovered from 80 v/v% ethanol solution; (2) Form A transformed to Form H (4H2O) through solid-phase transition through the solvate-free polymorph, Form A-2, and Form A also transformed into Form C (1Ethanol·3H2O) through solvent-mediated transformation. In the present study, we found that Form C also transforms to Form H through the solid-phase transition through the solvate-free polymorph Form C-2. The three polymorphs, Forms A, H, and C, were composed of helical chain structures. However, there was an incomprehensible affair in the solid-phase transition among the three polymorphs. Namely, Form A comprised a left-handed helix. On the other hand, Form C’s and Form H’s helix chains were in a left- and right-handed helix complex, respectively. The solid-phase transition of Form A into Form H suggested a switch in helicity in the solid. We attempted to explain the helicity change in the solid-phase transition. As a result, we suggest that the over-absorption of water by Form A-2 at high humidity plays a vital role in the helicity change. Full article
Show Figures

Figure 1

19 pages, 7927 KiB  
Article
Analysis and Mechanism Study of Residual Stress during the Spontaneous Crystallisation Process of Molten Titanium-Containing Blast Furnace Slag
Crystals 2024, 14(1), 70; https://doi.org/10.3390/cryst14010070 - 10 Jan 2024
Viewed by 246
Abstract
Molten titanium-containing blast furnace slag can be used to obtain cast stone materials by controlling a reasonable heat treatment system. The material acquired during this process showcases residual stress, which additionally impacts the macroscopic characteristics of the material. This article simulates the process [...] Read more.
Molten titanium-containing blast furnace slag can be used to obtain cast stone materials by controlling a reasonable heat treatment system. The material acquired during this process showcases residual stress, which additionally impacts the macroscopic characteristics of the material. This article simulates the process of manufacturing microcrystalline cast stones based on the self-crystallisation ability of titanium-containing products. This research employs X-ray diffraction to precisely and conveniently assess the residual stress of microcrystalline cast stones and investigates how viscosity and the thermal expansion coefficient influence the residual stress level. The study provides a theoretical foundation for explaining titanium-containing blast furnace slag and combines characterisation methods such as XRD (X-ray diffraction), SEM (Scanning electron microscope), DTA (Differential thermal analysis), and theoretical calculations such as Factpage and Fullprop to study the effect of the TiO2 content on the microstructure of self-crystallised mechanical characteristics of microcrystalline cast stones through residual stress. The results of the experiment indicate that as the TiO2 content in the system increases, the glass phase is reduced, the crystallinity improves, and the main crystal phase changes from a feldspar phase to a diopside phase. Furthermore, its viscosity, thermal expansion coefficient, and residual stress decrease while its corresponding compressive strength and bending strength increase. Full article
Show Figures

Figure 1

18 pages, 2898 KiB  
Review
Transistor-Based Synaptic Devices for Neuromorphic Computing
Crystals 2024, 14(1), 69; https://doi.org/10.3390/cryst14010069 - 09 Jan 2024
Viewed by 347
Abstract
Currently, neuromorphic computing is regarded as the most efficient way to solve the von Neumann bottleneck. Transistor-based devices have been considered suitable for emulating synaptic functions in neuromorphic computing due to their synergistic control capabilities on synaptic weight changes. Various low-dimensional inorganic materials [...] Read more.
Currently, neuromorphic computing is regarded as the most efficient way to solve the von Neumann bottleneck. Transistor-based devices have been considered suitable for emulating synaptic functions in neuromorphic computing due to their synergistic control capabilities on synaptic weight changes. Various low-dimensional inorganic materials such as silicon nanomembranes, carbon nanotubes, nanoscale metal oxides, and two-dimensional materials are employed to fabricate transistor-based synaptic devices. Although these transistor-based synaptic devices have progressed in terms of mimicking synaptic functions, their application in neuromorphic computing is still in its early stage. In this review, transistor-based synaptic devices are analyzed by categorizing them into different working mechanisms, and the device fabrication processes and synaptic properties are discussed. Future efforts that could be beneficial to the development of transistor-based synaptic devices in neuromorphic computing are proposed. Full article
Show Figures

Figure 1

16 pages, 4917 KiB  
Article
Solution-Processed Monolithic Tandem Perovskite/n-Si Hybrid Solar Cells Using MoO3/InZnO Bilayer-Based Interconnecting and Window Layers
Crystals 2024, 14(1), 68; https://doi.org/10.3390/cryst14010068 - 08 Jan 2024
Viewed by 318
Abstract
A metal oxide-based interconnecting and window layer consisting of a molybdenum oxide (MoO3)/Zn-doped In2O3 (IZO) bilayer was investigated in efficient solution-processed perovskite/n-Si monolithic tandem solar cells using formamidinium cesium lead triiodide, FA0.9Cs0.1PbI3, [...] Read more.
A metal oxide-based interconnecting and window layer consisting of a molybdenum oxide (MoO3)/Zn-doped In2O3 (IZO) bilayer was investigated in efficient solution-processed perovskite/n-Si monolithic tandem solar cells using formamidinium cesium lead triiodide, FA0.9Cs0.1PbI3, and poly(3,4-ethylenedioxythiophene)/poly(polystyrene sulfonate) (PEDOT:PSS). The MoO3/IZO bilayer with and without Au nanoparticle play a significant role in the charge extraction and recombination within the interconnecting layer and the window layer of the top cell, respectively. A power conversion efficiency of 18–19% was achieved with a short-circuit current, Jsc, of 17.8 mA/cm2; an open-circuit voltage, Voc, of 1.48 V; and an FF of 0.74 by adjusting the layer thicknesses of MoO3 (5 nm), Au nanoparticle layer (5 nm), and sputtered IZO (42 nm for ICL and 80 nm for window layer). Full article
Show Figures

Figure 1

Back to TopTop