Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Journal = Magnetism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7738 KiB  
Article
Estimation of Iron Loss in Permanent Magnet Synchronous Motors Based on Particle Swarm Optimization and a Recurrent Neural Network
Magnetism 2023, 3(4), 327-342; https://doi.org/10.3390/magnetism3040025 - 11 Dec 2023
Viewed by 657
Abstract
The popularity of permanent magnet synchronous motors (PMSMs) has increased in recent years due to their high efficiency, compact size, and low maintenance needs. Calculating iron loss in PMSMs is crucial for designing and optimizing PMSMs to achieve high efficiency and a long [...] Read more.
The popularity of permanent magnet synchronous motors (PMSMs) has increased in recent years due to their high efficiency, compact size, and low maintenance needs. Calculating iron loss in PMSMs is crucial for designing and optimizing PMSMs to achieve high efficiency and a long lifespan, as this can significantly affect motor performance. However, multiple factors influence the accuracy of iron loss calculations in PMSMs, including the intricate magnetic behavior of the motor under different operating conditions, as well as the influence of the motor’s dynamic behavior during the operation process. This paper proposes a method based on particle swarm optimization (PSO) and a recurrent neural network (RNN) to estimate the iron loss in PMSMs, independent of the empirical iron loss formula. This method establishes an iron loss calculation model considering high-order harmonics, rotating magnetization, and temperature factors. Accounting for the multifactor influence, the model studies the law of loss change under different magnetic flux densities, frequencies, and temperature conditions. To avoid the deviation problem caused by conventional polynomial fitting, a multilayer RNN and PSO are used to train and optimize the neural network. Iron loss in complex cases beyond the measurement range can be accurately estimated. The proposed method helps achieve a PMSM iron loss calculation model with broad applicability and high accuracy. Full article
(This article belongs to the Special Issue Digital Twins for Magnetic Devices)
Show Figures

Figure 1

19 pages, 9199 KiB  
Article
Analytical Modelling of the Slot Opening Function
Magnetism 2023, 3(4), 308-326; https://doi.org/10.3390/magnetism3040024 - 03 Nov 2023
Viewed by 352
Abstract
The slot opening function, also called relative air gap permeance, is a function which, multiplied by the flux density distribution of a slotless geometry, gives the flux density distribution of a slotted configuration. Here, the magnetic field inside the air gap of a [...] Read more.
The slot opening function, also called relative air gap permeance, is a function which, multiplied by the flux density distribution of a slotless geometry, gives the flux density distribution of a slotted configuration. Here, the magnetic field inside the air gap of a multi-slot surface facing a smooth one was studied, by solving the Laplace equation inside the air gap, in terms of a Fourier series. To obtain the Fourier coefficients, at first, the conformal mapping analytical solution of a single-slot configuration along the smooth surface, was considered. Then, the principle of superposition of the single-slot lost flux density distributions was applied to obtain the multi-slot distribution. The approach is valid in general, and in the case of interference among the flux density distributions of adjacent slots, where their mutual effect cannot be neglected. The field distributions obtained by using the proposed slot opening functions were compared with FEM simulations, showing satisfactory agreement. The numerical accuracy limits were also analysed and discussed. Full article
Show Figures

Figure 1

11 pages, 21773 KiB  
Article
Swirling of Horizontal Skyrmions into Hopfions in Bulk Cubic Helimagnets
Magnetism 2023, 3(4), 297-307; https://doi.org/10.3390/magnetism3040023 - 19 Oct 2023
Viewed by 790
Abstract
Magnetic hopfions are three-dimensional topological solitons embedded into a homogeneously magnetized background. The internal structure of hopfions is distinguished by the linked preimages—closed loops with a single orientation of the magnetization on the target space S2—and is thus characterized by the [...] Read more.
Magnetic hopfions are three-dimensional topological solitons embedded into a homogeneously magnetized background. The internal structure of hopfions is distinguished by the linked preimages—closed loops with a single orientation of the magnetization on the target space S2—and is thus characterized by the integer Hopf index QH. Alternatively, hopfions can be visualized as a result of the swirling of two-dimensional bimerons around the direction of an applied magnetic field. Since the bimeron consists of a circular core and an anti-skyrmion crescent, two hopfion varieties can be achieved with either bimeron constituent facing the hopfion interior. In bulk cubic helimagnets, however, the applied magnetic field leads to a spontaneous collapse of hopfions, i.e., the eigen-energy of hopfions has the minimum for zero hopfion radius R. Anti-hopfions with QH=1, in this case, pass through the intermediate toron state with two-point defects. Here, we demonstrate that the competing cubic and exchange anisotropies inherent in cubic non-centrosymmetric magnets (e.g., in the Mott insulator Cu2OSeO3) as a third level of the hierarchy of energy scales following the exchange and Dzyaloshinskii–Moriya interactions, may shift the energy minimum into the region of finite hopfion radii. Full article
Show Figures

Figure 1

17 pages, 7812 KiB  
Article
A Novel Analytical Formulation of the Magnetic Field Generated by Halbach Permanent Magnet Arrays
Magnetism 2023, 3(4), 280-296; https://doi.org/10.3390/magnetism3040022 - 05 Oct 2023
Viewed by 755
Abstract
This paper presents an analytical study of the air-gap magnetic field of a surface permanent magnet (SPM) linear, slot-less machine with a Halbach PM configuration, under the no-load condition. While other analytical formulations of the magnetic field generated by PMs are available, they [...] Read more.
This paper presents an analytical study of the air-gap magnetic field of a surface permanent magnet (SPM) linear, slot-less machine with a Halbach PM configuration, under the no-load condition. While other analytical formulations of the magnetic field generated by PMs are available, they exhibit some drawbacks, such as only providing a Fourier series, or being suitable to determine magnetic field average values, but not local magnetic field distributions. On the contrary, the proposed approach allows the determination of a unique, closed-form formulation for the slot-less machine air-gap field. This is obtained starting from the complex expression of the magnetic field of a conductor, inside the air gap, between two parallel smooth iron surfaces, obtained by means of the method of images. The magnetic field due to an infinitesimal conductor belonging to a current sheet is then integrated along a segment, providing the expression of the magnetic field due to the corresponding linear current density distribution, for current sheets perpendicular or parallel to the iron surfaces. Any Halbach PM segment disposition can, hence, be obtained via a suitable combination of field distributions generated by couples of current sheets with perpendicular and parallel orientation. Lastly, the no-load magnetic field expression with a Halbach array of PMs is retrieved. The proposed analytical model provides an accurate representation of the magnetic field distribution produced by any Halbach array, with an arbitrary number of segments and orientations. Additionally, the results obtained from the proposed analytical expressions are compared with FEM simulations realized by commercial software, and show an excellent agreement. Full article
Show Figures

Figure 1

13 pages, 2048 KiB  
Article
Zero-Pole Optimization of a Novel High-Quality-Factor Planar Helical Resonator
Magnetism 2023, 3(4), 267-279; https://doi.org/10.3390/magnetism3040021 - 28 Sep 2023
Viewed by 398
Abstract
A novel micro-solenoid resonator has been designed, simulated, and measured. The solenoid core consisted of a DuroidTM circuit board with a relative permittivity of 2.2. The resonator design incorporated four embedded copper vias with a radius of 125 µm and three surface [...] Read more.
A novel micro-solenoid resonator has been designed, simulated, and measured. The solenoid core consisted of a DuroidTM circuit board with a relative permittivity of 2.2. The resonator design incorporated four embedded copper vias with a radius of 125 µm and three surface conductors to form a rectangular coil. A pitch size of 250 µm was used for a 3.02 mm thick substrate. To enhance the resonator’s performance at higher frequencies, a capacitance was introduced in series through the via. This additional capacitor effectively couples the inductance, resistance, and stray capacitance. The optimization of the quality factor was investigated through pole transfer analysis, resulting in an increased resonance frequency of 12.25 GHz and an elevated Q-factor of 306. Moreover, besides its very high Q-factor, this resonator offers a simplified design and easy integration. An analytical lumped circuit model was employed to investigate the design, and the measured S-parameters closely matched the analytical model and electromagnetic simulation results. The tuned resonator exhibited a superior quality factor compared to other micro-resonators. Full article
Show Figures

Figure 1

8 pages, 818 KiB  
Article
Two-Step Magnetic Ordering in Intercalated Niobium Dichalcogenide MnXNbS2
Magnetism 2023, 3(3), 259-266; https://doi.org/10.3390/magnetism3030020 - 04 Sep 2023
Viewed by 662
Abstract
Transition metal dichalcogenides are studied due to the possibility of creating nanoscale semiconductor devices, as well as fundamental issues of magnetic ordering. We researched the crystal structure and magnetic properties of niobium dichalcogenide Mn0.30NbS2. The results of the X-ray [...] Read more.
Transition metal dichalcogenides are studied due to the possibility of creating nanoscale semiconductor devices, as well as fundamental issues of magnetic ordering. We researched the crystal structure and magnetic properties of niobium dichalcogenide Mn0.30NbS2. The results of the X-ray study showed the possible existence of an intermediate 23a0·23a0 structure between the “basic” superstructures. Also, two local maximums were found in the temperature dependence of the dynamic magnetic susceptibility. These features can indirectly confirm the presence of a transition superstructure and reflect the two-step nature of the magnetic ordering. Full article
Show Figures

Figure 1

14 pages, 1741 KiB  
Review
Review of Orbital Magnetism in Graphene-Based Moiré Materials
Magnetism 2023, 3(3), 245-258; https://doi.org/10.3390/magnetism3030019 - 28 Aug 2023
Viewed by 1125
Abstract
Recent years have seen the emergence of moiré materials as an attractive platform for observing a host of novel correlated and topological phenomena. Moiré heterostructures are generated when layers of van der Waals materials are stacked such that consecutive layers are slightly mismatched [...] Read more.
Recent years have seen the emergence of moiré materials as an attractive platform for observing a host of novel correlated and topological phenomena. Moiré heterostructures are generated when layers of van der Waals materials are stacked such that consecutive layers are slightly mismatched in their lattice orientation or unit cell size. This slight lattice mismatch gives rise to a long-wavelength moiré pattern that modulates the electronic structure and leads to novel physics. The moiré superlattice results in flat superlattice bands, electron–electron interactions and non-trivial topology that have led to the observation of superconductivity, the quantum anomalous Hall effect and orbital magnetization, among other interesting properties. This review focuses on the experimental observation and theoretical analysis of orbital magnetism in moiré materials. These systems are novel in their ability to host magnetism that is dominated by the orbital magnetic moment of Bloch electrons. This orbital magnetic moment is easily tunable using external electric fields and carrier concentration since it originates in the quantum anomalous Hall effect. As a result, the orbital magnetism found in moiré superlattices can be highly attractive for a wide array of applications including spintronics, ultra-low-power magnetic memories, spin-based neuromorphic computing and quantum information technology. Full article
Show Figures

Figure 1

19 pages, 4335 KiB  
Article
Correlation between the Material System and the Magnetic Properties in Thermoset-Based Multipolar Ring Magnets
Magnetism 2023, 3(3), 226-244; https://doi.org/10.3390/magnetism3030018 - 14 Aug 2023
Viewed by 701
Abstract
Multipolar bonded magnets based on thermosets offer the opportunity to expand the applications of bonded magnets with respect to an increasing chemical and thermal resistance compared to thermoplastics. To utilise this option, the correlation between the material system and the magnetic properties must [...] Read more.
Multipolar bonded magnets based on thermosets offer the opportunity to expand the applications of bonded magnets with respect to an increasing chemical and thermal resistance compared to thermoplastics. To utilise this option, the correlation between the material system and the magnetic properties must be explored amongst other influencing factors. This paper investigates the magnetic properties and the orientation of thermoset- (epoxy resin and phenolic resin) based bonded ring magnets with a hard magnetic filler of strontium-ferrite-oxide. The influence of the matrix material and the filler grade on the magnetic properties is correlated with the material characterisation showing a high impact of the embedding of the fillers into the matrix on the orientation and with that the magnetic properties. Based on a network theory, it can be justified that the magnetic properties can be increased due to a phenolic resin and a high filler grade. Further, it was shown that the orientation along the sample depth is highly affected by the strength of the outer magnetic field and limited in terms of the high-tool temperature in a thermoset-based production. With that, the sample depth, which reveals a proper orientation, is restricted so far. Full article
Show Figures

Graphical abstract

11 pages, 6387 KiB  
Article
Ab Initio Characterization of Magnetoelectric Coupling in Fe/BaTiO3, Fe/SrTiO3, Co/BaTiO3 and Co/SrTiO3 Heterostructures
Magnetism 2023, 3(3), 215-225; https://doi.org/10.3390/magnetism3030017 - 31 Jul 2023
Cited by 1 | Viewed by 940
Abstract
Magneto-electric coupling is a desirable property for a material used in modern electronic devices to possess due to the favorable possibilities of tuning the electronic properties using a magnetic field and vice versa. However, such materials are rare in nature. That is why [...] Read more.
Magneto-electric coupling is a desirable property for a material used in modern electronic devices to possess due to the favorable possibilities of tuning the electronic properties using a magnetic field and vice versa. However, such materials are rare in nature. That is why the so-called superlattice approach to creating such materials is receiving so much attention. In the superlattice approach, the functionality of a combined heterostructure depends on the interacting components and can be adjusted depending on the desired property. In the present paper, we present supercells of ferromagnetic thin films of Fe and Co deposited on ferroelectric and piezoelectric substrates of BaTiO3 and SrTiO3 that exhibit magnetism, ferroelectric polarization and piezoelectric effects. Within the structures under investigation, magnetic moments can be tuned by an external electric field via the ferroelectric dipoles. We investigate the effect of magnetoelectric coupling by means of ab initio spin-polarized and spin–orbit calculations. We study the structural, electronic and magnetic properties of heterostructures, and show that electrostriction can reduce the magnitude of the magnetization vector of a ferromagnet. This approach can become the basis for controlling the properties of one of the ferromagnetic layers of a superconducting spin valve, and thus the superconducting properties of the valve. Full article
Show Figures

Figure 1

11 pages, 2269 KiB  
Article
Investigation of the Features of a Superconducting Spin Valve Fe1/Cu/Fe2/Cu/Pb on a Piezoelectric PMN–PT Substrate
Magnetism 2023, 3(3), 204-214; https://doi.org/10.3390/magnetism3030016 - 13 Jul 2023
Viewed by 749
Abstract
The properties of a superconducting spin valve Fe1/Cu/Fe2/Cu/Pb on a piezoelectric PMN–PT substrate ([Pb(Mg1/3Nb2/3)O3]0.7–[PbTiO3]0.3) in electric and magnetic fields have been studied. The magnitude of the shift of the superconducting transition [...] Read more.
The properties of a superconducting spin valve Fe1/Cu/Fe2/Cu/Pb on a piezoelectric PMN–PT substrate ([Pb(Mg1/3Nb2/3)O3]0.7–[PbTiO3]0.3) in electric and magnetic fields have been studied. The magnitude of the shift of the superconducting transition temperature in the magnetic field H = 1 kOe equal to 150 mK was detected, while the full superconducting spin valve effect was demonstrated. Abnormal behavior of the superconducting transition temperature was observed, which manifests itself in the maximum values of the superconducting transition temperature with the orthogonal orientation of the magnetization vectors of ferromagnetic layers. This may indirectly indicate the formation of the easy axis of the magnetization vector of the Fe1-layer adjacent to the piezoelectric substrate PMN–PT. It was found that with an increase in the magnitude of the applied electric field to the PMN–PT substrate, the shift in the superconducting transition temperature of the Fe1/Cu/Fe2/Cu/Pb heterostructure increases. The maximum shift was 10 mK in an electric field of 1 kV/cm. Thus, it has been shown for the first time that a piezoelectric superconducting spin valve can function. Full article
Show Figures

Graphical abstract

24 pages, 1378 KiB  
Review
Magnetic Field as an Important Tool in Exploring the Strongly Correlated Fermi Systems and Their Particle–Hole and Time-Reversal Asymmetries
Magnetism 2023, 3(3), 180-203; https://doi.org/10.3390/magnetism3030015 - 29 Jun 2023
Cited by 1 | Viewed by 690
Abstract
In this review, we consider the impact of magnetic field on the properties of strongly correlated heavy-fermion compounds such as heavy-fermion metals and frustrated insulators with quantum spin liquid. Magnetic field B can be considered a universal tool, allowing the exploration of the [...] Read more.
In this review, we consider the impact of magnetic field on the properties of strongly correlated heavy-fermion compounds such as heavy-fermion metals and frustrated insulators with quantum spin liquid. Magnetic field B can be considered a universal tool, allowing the exploration of the physics controlling the remarkable properties of heavy-fermion compounds. These vivid properties are T/B scaling, exhibited under the application of magnetic field B and at fixed temperature T, and the emergence of Landau Fermi liquid behavior under the application of magnetic field. We analyze the influence of quasiparticle–hole asymmetry on the properties of heavy-fermion (HF) compounds such as the universal scaling behavior of the thermopower S/T exhibited under the application of magnetic field B. We show that universal scaling is demonstrated by different HF compounds such as β-YbAlB4, YbRh2Si2, and strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2. Analyzing YbRh2Si2, we show that the T/B scaling behavior of S/T is violated at the antiferromagnetic phase (AF) transition. The residual resistivity ρ0 and the density of states N0 experience jumps at the AF transition, causing two jumps in the thermopower and its sign reversal. Our consideration is based on the flattening of the single-particle spectrum that strongly affects ρ0 and N0 and leads to the violation of particle–hole symmetry. The particle–hole asymmetry generates the asymmetrical part Δσd(V) of tunneling differential conductivity σd(V), Δσd(V)=σd(V)σd(V), where V is the voltage bias. We demonstrate that in the presence of magnetic field, the quasiparticle–hole asymmetry vanishes, the LFL behavior is restored, and the asymmetry disappears. Our calculations of the mentioned properties of HF compounds, based on the fermion condensation theory, are in good agreement with the experiment and support our conclusion that the fermion condensation theory is capable of describing the properties of HF compounds, including those exhibited under the application of magnetic field. Full article
Show Figures

Figure 1

11 pages, 2592 KiB  
Article
Determination of the Magnetic Intermediate Permeability of Special Materials Based on FEM-Simulation and Hall-Sensor Measurement
Magnetism 2023, 3(2), 169-179; https://doi.org/10.3390/magnetism3020014 - 19 Jun 2023
Viewed by 1052
Abstract
This document presents the process flow and the experimental conditions for calculating the static magnetic intermediate permeability of a specimen with a dedicated geometrical contour and surface for simulation parameter of metal detection systems. In this case, intermediate is explained and defined as [...] Read more.
This document presents the process flow and the experimental conditions for calculating the static magnetic intermediate permeability of a specimen with a dedicated geometrical contour and surface for simulation parameter of metal detection systems. In this case, intermediate is explained and defined as probes with a magnetic permeability between 10 and 1000. An analysis of recent and current measurement standards as well as similar simulation principles leads to the contribution value of this new hybrid process flow. To calculate the permeability value in a first step, an electromagnetic circuit was constructed and excited with a defined electrical DC current with a dedicated tolerance for generating a static approximated homogenic magnetic field in a defined air gap space sector. Additionally, to the H-field generation part double copper coil, two magnetic ferrite cylinders with known permeability were used. The electrical and magnetic circuit has been modeled by an Ansys FEM Electronic Desktop software; the solver is magnetic static. Specifically, the simulated magnetic field distribution of the airgap was evaluated by using different Hall sensor elements with different tolerances. Subsequently, the electromagnetic circuit was expanded by implementing different cylindrical and cube shaped probes on a defined position inside the air gap sector with homogenic magnetization. Moreover, based on the analysis of the air gap structure without the probes, a detailed 3D-FEM model of the air gap magnetic field with special probes was established, which provides the environmental field distribution of the probes. The simulation models were compared with the corresponding Hall sensor measurements, which proved the high accuracy experimental validity of the models established in this paper. Finally, some key features related to parameter variations in the electromagnetic circuit were extracted, which can significantly reflect the characteristics of the robustness of the measurement principle. The main findings reported in this paper will be beneficial for magnetic parameter settings in electromagnetic simulation. Full article
Show Figures

Graphical abstract

11 pages, 3317 KiB  
Communication
Effect of Laminated Core Body Size on Motor Magnetic Properties
Magnetism 2023, 3(2), 158-168; https://doi.org/10.3390/magnetism3020013 - 06 Jun 2023
Viewed by 831
Abstract
The magnetic characteristics of electromagnetic steel sheets used for motors are evaluated under ideal sinusoidal excitation. However, in actual equipment driving, excitation by pulse-width modulation (PWM) waves is the mainstream method. Therefore, it is necessary to clarify how the magnetic properties used in [...] Read more.
The magnetic characteristics of electromagnetic steel sheets used for motors are evaluated under ideal sinusoidal excitation. However, in actual equipment driving, excitation by pulse-width modulation (PWM) waves is the mainstream method. Therefore, it is necessary to clarify how the magnetic properties used in motors are changed by sinusoidal excitation and inverter excitation. To clarify the magnetic properties of the laminated core by inverter excitation, samples with different core sizes were prepared and the effects on the magnetic properties were then investigated. The magnetic properties were measured by changing only the input voltage VDC while maintaining the carrier frequency and modulation factor constant. As the results, the iron loss values of the small, medium, and large samples with inverter excitation were 6.05, 9.58, and 11.62 W/kg, respectively. The iron losses of the small, medium, and large toroidal cores with inverter excitation increased by 124.9, 256.1, and 332.0%, respectively, compared with the iron loss of each toroidal core with sinusoidal excitation. The larger the body, the higher the required voltage and iron loss. It can be inferred that a larger amount of energy was required to excite a larger toroidal core. This was because the change in magnetic flux density per unit time of the large toroidal core was greater than that of other cores. This indicates that the large toroidal core generated larger eddy currents than other cores. Therefore, it is possible to say that large toroidal cores generate greater eddy current losses than other cores. Full article
Show Figures

Figure 1

10 pages, 396 KiB  
Article
Hydromagnetic Waves in Cold Nuclear Matter
Magnetism 2023, 3(2), 148-157; https://doi.org/10.3390/magnetism3020012 - 29 May 2023
Viewed by 746
Abstract
I consider a proton–neutron fluid mixture placed in an ultra-strong external static magnetic field and derive the spin-independent, small-amplitude disturbances in infinitely extended systems. As a theoretical framework I adopt a hydrodynamical model for the proton and neutron fluids moving in a Skyrme [...] Read more.
I consider a proton–neutron fluid mixture placed in an ultra-strong external static magnetic field and derive the spin-independent, small-amplitude disturbances in infinitely extended systems. As a theoretical framework I adopt a hydrodynamical model for the proton and neutron fluids moving in a Skyrme mean-field derived from the time-dependent Hartree Fock formulation of the many-body nuclear problem. From the mass, momentum balance, and Maxwell equations, I set up a system of equations governing the electromagnetic field and the continuum-mechanical fields of the mixture. Next, the hydromagnetic equations are linearized, and the occurrence of small-amplitude distortions of the velocity field is analyzed for various orientations of the constant external magnetic induction with respect to the wave propagation vector. The derivation of the above equations is carried out for the inviscid case. Full article
Show Figures

Figure 1

13 pages, 1059 KiB  
Article
Assessment of Geomagnetically Induced Currents Impact on Power Grid Modelling
Magnetism 2023, 3(2), 135-147; https://doi.org/10.3390/magnetism3020011 - 15 May 2023
Cited by 1 | Viewed by 1070
Abstract
Recent history demonstrates that threat has no borders, though risk does, due to national and regional differences in vulnerabilities and exposure landscapes. The difference between well and poorly managed threat is striking. Inequalities in preparing for threats as a function of their type [...] Read more.
Recent history demonstrates that threat has no borders, though risk does, due to national and regional differences in vulnerabilities and exposure landscapes. The difference between well and poorly managed threat is striking. Inequalities in preparing for threats as a function of their type are still apparent. Compared to more concerning electromagnetic interference threats, the impact of geomagnetic disturbance (GMD) on power grid operation is not well studied. The need for detailed research of GMD negative impacts is expected to broaden awareness. The amplitude of geomagnetically induced currents (GICs) is treated as a uniform measure of danger that can be processed by various stakeholders. Hence, methods for increasing the accuracy of GIC representation are presented in this paper. A low-entropy signal is defined and it is shown that the feature of low signal entropy can be used for increasing the accuracy of the measurement equipment. At the end, a full-system view of GMD impact on power grid operation is given. Full article
Show Figures

Figure 1

Back to TopTop