Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,954)

Search Parameters:
Journal = Aerospace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 13613 KiB  
Article
Flight-Data-Based High-Fidelity System Identification of DJI M600 Pro Hexacopter
Aerospace 2024, 11(1), 79; https://doi.org/10.3390/aerospace11010079 - 15 Jan 2024
Viewed by 50
Abstract
Research and industrial application can require custom high-level controllers for industrial drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI M600 Pro hexacopter. This is a widely used multicopter in the research and industrial community due to [...] Read more.
Research and industrial application can require custom high-level controllers for industrial drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI M600 Pro hexacopter. This is a widely used multicopter in the research and industrial community due to its high payload capability and reliability. To support these communities, the focus of control model identification was on the exploration and implementation of DJI Onboard Software Development Kit (OSDK) functionalities, also including some unconventional special modes. Thus, the resulting model can be controlled with the same OSDK functionalities as the real drone, making control development and application time effective. First, the hardware and software structure of the additional DJI M600 onboard system are introduced. Then, the postulated dynamic and control system models are shown. Next, real flight test campaigns generating data for system identification are presented. Then, the mass and inertial properties are estimated for TB47S and TB48S battery sets and the custom Forerunner UAV payload. Dynamic system model identification includes the aerodynamic effects and considers hover, vertical, and horizontal forces together with static horizontal wind components and finally the rotational moments and dynamics. The control system components were identified following the structure of OSDK, including vertical, horizontal, and yaw loops. After identification, the model was validated and refined based on an unused flight test and software-in-the-loop simulation data. The simulation is provided by DJI and was also compared to real flight results. This comparison showed that the DJI simulation covers the dynamics of the real drone well, but it requires being connected to the drone and needs the controllers onboard to be implemented in advance, which limits applicability and increases development time. This was another motivation to introduce a standalone simulation in Matlab Simulink, which covers all the important modes of OSDK control and can be run solely in Matlab without any hardware support. The constructed model will be published for the benefit of the research and industrial community. Full article
Show Figures

Figure 1

18 pages, 7275 KiB  
Article
Comparative Study of Soft In-Plane and Stiff In-Plane Tiltrotor Blade Aerodynamics in Conversion Flight, Using CFD-CSD Coupling Approach
Aerospace 2024, 11(1), 77; https://doi.org/10.3390/aerospace11010077 - 15 Jan 2024
Viewed by 51
Abstract
Tiltrotors permit aircrafts to operate vertically with lift, yet convert to ordinary forward flight with thrust. The challenge is to design a tiltrotor blade yielding maximum lift and thrust that converts smoothly without losing integrity or efficiency. The two types of blades, soft [...] Read more.
Tiltrotors permit aircrafts to operate vertically with lift, yet convert to ordinary forward flight with thrust. The challenge is to design a tiltrotor blade yielding maximum lift and thrust that converts smoothly without losing integrity or efficiency. The two types of blades, soft in-plane and stiff in-plane—the designation depending on the value of the blade’s natural lag frequency—exhibit different structural responses under the same flight conditions, differently affecting the aerodynamics of the blades, especially in the complex aerodynamic environment of conversion flight where the aerodynamic differences are significant. This phase of flight is not deeply researched, nor is the analytical coupling method much used. To study the influence of blade type on aerodynamics during conversion, models suitable for the conversion flight simulation are established for the application of coupled computational fluid dynamics and computational structural dynamics (CFD-CSD) methods. Each method is implemented with well-accepted techniques (the Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations, the Reverse Overset Assembly Technique (ROAT), and the Timoshenko beam model. To improve the solving efficiency, a loose coupling strategy is used in constructing the two-way coupled model. The XV-15 tiltrotor is used for verification. The aeroelastic simulation of soft in-plane and stiff in-plane blades in conversion flight indicates an impactful role on the modal shapes, with a significant difference in the third flap modal shapes for the XV-15 rotor. However, the effect on aerodynamic performance is relatively small. In the first half of the flight conversion, the thrust of stiff in-plane blades is larger than that of soft in-plane blades, but in the last half, the influence of structural characteristics on aerodynamic performance is negligible and the thrust of the blades tends to be equal. Full article
(This article belongs to the Special Issue Applied Aeroelasticity and Fluid-Structure Interaction)
Show Figures

Figure 1

14 pages, 3811 KiB  
Article
Prediction of Hourly Airport Operational Throughput with a Multi-Branch Convolutional Neural Network
Aerospace 2024, 11(1), 78; https://doi.org/10.3390/aerospace11010078 - 15 Jan 2024
Viewed by 107
Abstract
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput is affected by convective weather in the vicinity of the airport and how [...] Read more.
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput is affected by convective weather in the vicinity of the airport and how to predict short-term airport operational throughput have not been well studied. Convective weather near the airport could make arrivals miss their positions in the arrival stream and reduce airfield efficiency in terms of the utilization of runway capacities. This research leverages the learning-based method (MB-ResNet model) to predict airport hourly throughput and takes Hartsfield–Jackson Atlanta International Airport (ATL) as the case study to demonstrate the developed method. To indicate convective weather, this research uses Rapid Refresh model (RAP) data from the National Oceanic and Atmospheric Administration (NOAA). Although it is a comprehensive and powerful weather data product, RAP has not been widely used in aviation research. This study demonstrated that RAP data, after being carefully decoded, cleaned, and pre-processed, can play a significant role in explaining airfield efficiency variation. Applying machine learning/deep learning in air traffic management is an area worthy of the attention of aviation researchers. Such advanced artificial intelligence techniques can make use of big data from the aviation sector and improve the predictability of the national airspace system and, consequently, operational efficiency. The short-term airport operational throughput predicted in this study can be used by air traffic controllers and airport managers for the allocations of resources at airports to improve airport operations. Full article
Show Figures

Figure 1

18 pages, 21772 KiB  
Article
Flow Characteristics of Liquid Jet in Transverse Shear Crossflow
Aerospace 2024, 11(1), 76; https://doi.org/10.3390/aerospace11010076 - 13 Jan 2024
Viewed by 278
Abstract
The numerical simulation method was used to investigate the deflection and deformation process of a circular lubricating oil jet in transverse shear airflow. The numerical model was compared and validated against the experimental data. The physical parameters of Mobil jet Oil II were [...] Read more.
The numerical simulation method was used to investigate the deflection and deformation process of a circular lubricating oil jet in transverse shear airflow. The numerical model was compared and validated against the experimental data. The physical parameters of Mobil jet Oil II were utilized in this simulation with the nozzle diameter ranging from 0.5 to 2.5 mm, the maximum liquid/gas momentum ratios varying from 10.35 to 165.50, and the injection angle ranging from 0 to 30° in the opposite airflow direction. The results show that an increase in the nozzle diameter decreases the degree of jet deflection. The higher airflow velocity causes more fluctuations in the oil-jet trajectory, while the higher oil-injection velocity reduces fluctuations in the trajectory. The parabolic curve equations were used to derive the trajectory equations for the jet column’s pre-disintegration under both vertical incidence and a small angle of reverse airflow. The nozzle diameter and maximum oil/air momentum ratio were used to obtain a formula for the trajectory curve of the lubricating oil. Additionally, a formula for fitting the trajectory curve of oil injected in the opposite airflow direction regarding the injection angle was developed. Full article
(This article belongs to the Special Issue Jet Flows)
Show Figures

Figure 1

51 pages, 6383 KiB  
Article
Aerodynamic Instabilities in High-Speed Air Intakes and Their Role in Propulsion System Integration
Aerospace 2024, 11(1), 75; https://doi.org/10.3390/aerospace11010075 - 12 Jan 2024
Viewed by 228
Abstract
High-speed air intakes often exhibit intricate flow patterns, with a specific type of flow instability known as ‘buzz’, characterized by unsteady shock oscillations at the inlet. This paper presents a comprehensive review of prior research, focused on unraveling the mechanisms that trigger buzz [...] Read more.
High-speed air intakes often exhibit intricate flow patterns, with a specific type of flow instability known as ‘buzz’, characterized by unsteady shock oscillations at the inlet. This paper presents a comprehensive review of prior research, focused on unraveling the mechanisms that trigger buzz and its implications for engine stability and performance. The literature survey delves into studies concerning complex-shaped diffusers and isolators, offering a thorough examination of flow aerodynamics in unstable environments. Furthermore, this paper provides an overview of contemporary techniques for mitigating flow instability through both active and passive flow control methods. These techniques encompass boundary layer bleeding, the application of vortex generators, and strategies involving mass injection and energy deposition. The study concludes by discussing future prospects in the domain of engine-intake aerodynamic compatibility. This work serves as a valuable resource for researchers and engineers striving to address and understand the complexities of high-speed air induction systems. Full article
Show Figures

Figure 1

16 pages, 1279 KiB  
Article
Autonomous Shape Decision Making of Morphing Aircraft with Improved Reinforcement Learning
Aerospace 2024, 11(1), 74; https://doi.org/10.3390/aerospace11010074 - 12 Jan 2024
Viewed by 200
Abstract
The autonomous shape decision-making problem of a morphing aircraft (MA) with a variable wingspan and sweep angle is studied in this paper. Considering the continuity of state space and action space, a more practical autonomous decision-making algorithm framework of MA is designed based [...] Read more.
The autonomous shape decision-making problem of a morphing aircraft (MA) with a variable wingspan and sweep angle is studied in this paper. Considering the continuity of state space and action space, a more practical autonomous decision-making algorithm framework of MA is designed based on the deep deterministic policy gradient (DDPG) algorithm. Furthermore, the DDPG with a task classifier (DDPGwTC) algorithm is proposed in combination with the long short-term memory (LSTM) network to improve the convergence speed of the algorithm. The simulation results show that the shape decision-making algorithm based on the DDPGwTC enables MA to adopt the optimal morphing strategy in different task environments with higher autonomy and environmental adaptability, which verifies the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Cross-Domain Intelligent Flight Vehicle Design)
Show Figures

Figure 1

16 pages, 2721 KiB  
Article
Enhancing Planetary Exploration through Digital Twins: A Tool for Virtual Prototyping and HUMS Design
Aerospace 2024, 11(1), 73; https://doi.org/10.3390/aerospace11010073 - 12 Jan 2024
Viewed by 235
Abstract
In recent times, the demand for resilient space rovers has surged, which has been driven by the amplified exploration of celestial bodies such as the Moon and Mars. Recognising the limitations of direct human intervention in such environments, these rovers have gained a [...] Read more.
In recent times, the demand for resilient space rovers has surged, which has been driven by the amplified exploration of celestial bodies such as the Moon and Mars. Recognising the limitations of direct human intervention in such environments, these rovers have gained a great deal of importance. Our proposal introduces a digital twin for space exploration rovers that seamlessly integrates intricate geometric, kinematic, and dynamic models, along with sensor and control systems. It faithfully emulates genuine real-world scenarios, providing an authentic testing ground for rover prototypes and the development of damage detection algorithms. Its flexibility in replicating diverse terrains, environmental conditions, and operational scenarios significantly expedites rover development. The digital twin serves as a valuable tool in the perfecting of damage detection systems, allowing engineers to efficiently craft diagnostic algorithms. This innovative approach not only conserves valuable resources but also ensures the robustness of space mission systems, thus enhancing the overall success and safety of planetary exploration endeavours. Full article
(This article belongs to the Special Issue Space Systems Preliminary Design)
Show Figures

Figure 1

21 pages, 15263 KiB  
Article
Evaluation of Mixing Effect on Coupled Heat Release and Transfer Performance of a Novel Segregated Solid Rocket Motor
Aerospace 2024, 11(1), 72; https://doi.org/10.3390/aerospace11010072 - 12 Jan 2024
Viewed by 281
Abstract
The effect of mixing on coupled heat release and transfer performance of a novel segregated solid motor is numerically evaluated with a transient two-dimensional combustion model. The results show that vortex structures are formed and evolved in the combustion chamber. Quantitative calculation of [...] Read more.
The effect of mixing on coupled heat release and transfer performance of a novel segregated solid motor is numerically evaluated with a transient two-dimensional combustion model. The results show that vortex structures are formed and evolved in the combustion chamber. Quantitative calculation of the mixing effect shows the inhomogeneous distribution of oxidant and fuel species. The well-mixing area is located in a narrow belt-like coupled combustion region near the burning surface of the propellant. Heat transfer coefficient decreases greatly due to lower combustion reaction rate and enlarged flow channel area. Heat transfer coefficients near the two ends of the propellant grain are higher than other parts due to the influence of vortex mixing. Raising the inlet mass flow rate leads to enhanced mixing and heat transfer, which results in a lower temperature and regression rate of the propellant with combustion time. Temperature and oxidation rates of H2 and CO are unevenly distributed in the boundary layer of coupled combustion. Increasing the mass flux of inlet oxidizer gas leads to a higher combustion heat release rate. Therefore, the gas-phase temperature increases significantly. The heat release rate reaches the maximum near the ends of the propellant grain, where vortex mixing strengthens the coupled combustion process in the motor. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges)
Show Figures

Figure 1

16 pages, 2542 KiB  
Article
Switching Logic for a Direct Hybrid Electric Powertrain
Aerospace 2024, 11(1), 71; https://doi.org/10.3390/aerospace11010071 - 12 Jan 2024
Viewed by 338
Abstract
Hybrid electric aircraft with a powertrain based on fuel cells and batteries can reduce climate-active emissions in aviation. In a direct hybrid powertrain, the fuel cell and the battery are connected in parallel, without a DC/DC converter balancing their voltage levels. Switches make [...] Read more.
Hybrid electric aircraft with a powertrain based on fuel cells and batteries can reduce climate-active emissions in aviation. In a direct hybrid powertrain, the fuel cell and the battery are connected in parallel, without a DC/DC converter balancing their voltage levels. Switches make it possible to select different operational modes (fuel cell only, hybrid or battery charging) depending on the power demand during different flight phases. To exploit the high specific energy of hydrogen, the system should change from Hybrid Mode during take-off to Fuel Cell Mode in cruise. During descent, the battery can be charged if Charging Mode is selected. To avoid voltage and current peaks and consequent damage to components when switching between modes, certain conditions must be fulfilled. Those switching conditions were defined, and switching procedures for changing from one mode to the other during flight were developed and tested in a lab system. In a direct hybrid, the system voltage depends on the required power. When switching from Hybrid Mode to Fuel Cell Mode, a short reduction in power of 65% is necessary for the examined system to meet the switching requirements. It is also shown how this power loss can be reduced to 25% by distributed propulsion with a second powertrain or even eliminated by a change in the hybrid ratio. Full article
(This article belongs to the Special Issue Electric Power Systems and Components for All-Electric Aircraft)
Show Figures

Figure 1

26 pages, 16984 KiB  
Article
Aircraft Upset Recovery Strategy and Pilot Assistance System Based on Reinforcement Learning
Aerospace 2024, 11(1), 70; https://doi.org/10.3390/aerospace11010070 - 11 Jan 2024
Viewed by 262
Abstract
The upset state is an unexpected flight state, which is characterized by an unintentional deviation from normal operating parameters. It is difficult for the pilot to recover the aircraft from the upset state accurately and quickly. In this paper, an upset recovery strategy [...] Read more.
The upset state is an unexpected flight state, which is characterized by an unintentional deviation from normal operating parameters. It is difficult for the pilot to recover the aircraft from the upset state accurately and quickly. In this paper, an upset recovery strategy and pilot assistance system (PAS) based on reinforcement learning is proposed. The man–machine closed-loop system was established and the upset state, such as a high angle of attack and large attitude angle, was induced. The upset recovery problem was transformed into a sequential decision problem, and the Markov decision model of upset recovery was established by taking the deflection change of the control surface as the action. The proximal policy optimization (PPO) algorithm was selected for the strategy training. The adaptive pilot model and the reinforcement learning method proposed in this paper were used to make the aircraft recover from the upset state. Based on the correspondence between the flight state, the recovery method, and the recovery result, the aircraft upset recovery safety envelopes were formed, and the four-level upset recovery PAS with alarm warning, coordinated control, and autonomous recovery modes was constructed. The results of the digital virtual flight simulation and ground flight test show that compared with a traditional single pilot, the aircraft upset recovery strategy, the upset recovery safety envelopes, and the PAS established in this study could reduce the handling burden of the pilot and improve the success rate and effect of upset recovery. This research has certain theoretical reference values for flight safety and pilot training. Full article
Show Figures

Figure 1

14 pages, 4218 KiB  
Article
Design and Validation of a Photoelectric Current Measuring Unit for Lunar Daytime Simulation Chamber
Aerospace 2024, 11(1), 69; https://doi.org/10.3390/aerospace11010069 - 11 Jan 2024
Viewed by 239
Abstract
Charging of the lunar surface induced by solar radiation can potentially threaten in situ resource utilization. Associated issues include dust adhesion and material degradation. Photoelectric currents are the primary cause of surface charging. This work reports on the development of a unit capable [...] Read more.
Charging of the lunar surface induced by solar radiation can potentially threaten in situ resource utilization. Associated issues include dust adhesion and material degradation. Photoelectric currents are the primary cause of surface charging. This work reports on the development of a unit capable of measuring photoelectric currents in a vacuum chamber, which can simulate surface charging under conditions similar to those on the moon in daytime. The main components of the unit are a mesh grid, a photocathode specimen, and a ring collector. Photoelectric currents from an aluminum sample were measured by adjusting the electric potential of these components, and the impact of the electric potential of each component is discussed. Calculating the expected electric current within the experimental setup allowed validation of the current measurements: the measured and calculated values agreed well with an error of ~5.5%. Finally, the photoelectric currents for various metals (aluminum, nickel, and copper) were measured using the same experimental setup. The results showed consistent measurement of photoelectric current values across all metals. This study offers insights into the development of units for measuring photoelectric current and methodologies to validate their results. Full article
Show Figures

Figure 1

35 pages, 20484 KiB  
Article
Testing Structural Elements under Multiaxial Loading: A Numerical Model of the Bench to Understand and Predict Complex Boundary Conditions
Aerospace 2024, 11(1), 68; https://doi.org/10.3390/aerospace11010068 - 10 Jan 2024
Viewed by 295
Abstract
Airworthiness certification requires proof of structure strength, which is performed generally through a building block approach. To achieve this, representative intermediate-scale experiments generated by test benches are, in general, needed, in addition to material characterization on a coupons scale and structure testing on [...] Read more.
Airworthiness certification requires proof of structure strength, which is performed generally through a building block approach. To achieve this, representative intermediate-scale experiments generated by test benches are, in general, needed, in addition to material characterization on a coupons scale and structure testing on a large scale. The VERTEX test bench can generate the combined loading of tension/compression-shear-pressure on structural elements and was modelled with Finite Elements to perform virtual testing, representative of its intermediate-scale specificity. The numerous bolted joints of the bench were modelled and their behavior was identified in previous tests, so the model could quantitatively estimate the transfer function of the bench, which is the relationship between the displacements imposed by the jacks and the resulting loads on a given sample. The VERTEX model was identified to represent load shapes and amplitudes based on a training set and was later confronted by a validation set of tests of tension and shear. A model with ideal boundary conditions was also developed for a comparison, but it failed to predict some load shape specificities and did not give any indication of the loading amplitude. Application cases of the developed model are shown to assess a range of virtual testing possibilities. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 8265 KiB  
Article
Contribution of Different Parameters on Film Cooling Efficiency Based on the Improved Orthogonal Experiment Method
Aerospace 2024, 11(1), 67; https://doi.org/10.3390/aerospace11010067 - 10 Jan 2024
Viewed by 306
Abstract
The use of film cooling technology is one of the most effective ways to minimize the damage to wall materials caused by the high-temperature environment in a ramjet. Optimization of the design to achieve the highest film cooling efficiency on the hot wall [...] Read more.
The use of film cooling technology is one of the most effective ways to minimize the damage to wall materials caused by the high-temperature environment in a ramjet. Optimization of the design to achieve the highest film cooling efficiency on the hot wall is the focus of current research. Due to the large number of parameters affecting the film cooling efficiency and the interactions between them, an improved orthogonal design-of-experiments method is chosen to investigate the contribution of different parameters. Flat plate film cooling and transverse groove film cooling are simulated numerically. The results indicated that the contribution of each parameter is ranked as hole spacing (S/D) > incidence angle > blowing ratio for flat plate film cooling; hole spacing > transverse groove depth > blowing ratio > incidence angle for transverse groove film cooling. The film cooling efficiency is inversely proportional to the size of the flow field area affected by the vortex ring and directly proportional to the size of the vortex intensity. Transverse groove film cooling forms a more complete film in most cases, which is better than flat plate film cooling. Within the scope of this study, a complete film at S/D > 2.0 cannot be generated on the flat plate, which should not be used in ramjet. Full article
(This article belongs to the Special Issue Recent Advances in Ramjets)
Show Figures

Figure 1

23 pages, 6629 KiB  
Article
Parameter Tuning of a Vapor Cycle System for a Surveillance Aircraft
Aerospace 2024, 11(1), 66; https://doi.org/10.3390/aerospace11010066 - 10 Jan 2024
Viewed by 386
Abstract
Surveillance aircraft perform long-duration missions (>eight hours) that include detection and identification of objects on the ground, the water, or in the air. They have surveillance systems that require large amounts of cooling power (typically 10 s of kW) for long durations. For [...] Read more.
Surveillance aircraft perform long-duration missions (>eight hours) that include detection and identification of objects on the ground, the water, or in the air. They have surveillance systems that require large amounts of cooling power (typically 10 s of kW) for long durations. For aircraft application, vapor cycle systems (VCS) are emerging as a more efficient alternative to conventional cooling systems. In this study, a two-part method was applied to a cooling system with a VCS that can be installed on a surveillance aircraft. The first part focused on a parameter tuning study set-up and demonstrated how after identifying the operating conditions, constraints, and requirements, the only cooling system parameter available for tuning was the VCS compressor speed. The second part focused on a modelling and solving strategy for the cooling system and showed how the capacity of an aircraft cooling system was impacted by tuning the VCS compressor speed (Hz) for a surveillance system heat flow rate from 10 kW to 70 kW. The results from this study can be used to design a control strategy for the compressor. In a broader perspective, the two-part method and the results analysis presented can serve as a preliminary method for aircraft VCS control optimization studies. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 4271 KiB  
Article
Structural Flexibility Effect on Spaceborne Solar Observation System’s Micro-Vibration Response
Aerospace 2024, 11(1), 65; https://doi.org/10.3390/aerospace11010065 - 10 Jan 2024
Viewed by 284
Abstract
The spaceborne solar observation system is crucial for the study of space phenomena such as solar flares, which requires high tracking accuracy. This study presents a coupling model that integrates mechanical, electrical, and control models to investigate the structural flexibility effect on the [...] Read more.
The spaceborne solar observation system is crucial for the study of space phenomena such as solar flares, which requires high tracking accuracy. This study presents a coupling model that integrates mechanical, electrical, and control models to investigate the structural flexibility effect on the micro-vibration response. We established a rigid–flexible model using mechanical parts. We considered the influence of flexible features while studying the dynamic responses in its operation. The state-space equations of the system showed that modal frequency, damping, and modal participation factors played significant roles. We derived transfer functions using the Laplace transform of the coupling models to better understand this mechanism, and Simulink models were thereby established. We simulated the acceleration responses of the rigid–flexible and rigid models under angle tracking modes, and the results showed significant differences. We also simulated the acceleration responses of the models under various control frequencies, and the optimal control frequency was thus obtained. Finally, we performed experiments, and the results indicated that the rigid–flexible model could better predict the motion and acceleration responses for the spaceborne solar observation system. This study provides valuable information for understanding the role of flexible features in space performance high-tracking accuracy instruments and for micro-vibration suppression research. Full article
Show Figures

Figure 1

Back to TopTop