Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (381)

Search Parameters:
Journal = AgriEngineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1548 KiB  
Article
Post-Harvest Management of Immature (Green and Semi-Green) Soybeans: Effect of Drying and Storage Conditions (Temperature, Light, and Aeration) on Color and Oil Quality
AgriEngineering 2024, 6(1), 135-154; https://doi.org/10.3390/agriengineering6010009 - 15 Jan 2024
Abstract
Soybean downgrading due to immature (green and semi-green) color at harvest, caused by frost conditions, poses a significant loss to producers and processors. After harvest, drying and storage are important for preserving the quality of the harvested produce. This study investigated the impact [...] Read more.
Soybean downgrading due to immature (green and semi-green) color at harvest, caused by frost conditions, poses a significant loss to producers and processors. After harvest, drying and storage are important for preserving the quality of the harvested produce. This study investigated the impact of drying on color change in harvested immature soybeans and the effect of the soybean moisture content, storage environment (temperature, light, and aeration), and storage period on color change and oil quality of immature soybeans. Soybeans were harvested at three different maturity stages: R6 (green) and R7 (semi-green) in pods and R8 (fully matured) in seed. The soybeans in pods were dried, shelled, and conditioned to moisture contents of 12% and 17% (wet basis) prior to storage in 12 storage chamber (box) environments. The chambers were built to have four environments of “light” and “no light” with and without aeration and were stored at temperatures of either 4 °C or 23.5 °C for 24 weeks. Samples were taken every 2 weeks for 2 months and then bimonthly in storage. Soybean color change during drying and their chlorophyll, color, peroxide value (PV), and free fatty acid (FFA) status in storage were determined. Visual observation showed that R6 (green) soybean color faded after 48 h drying, which was supported with a colorimeter reading as the “a” value increased from −8.89 to −3.83 and −8.89 to −1.71 with 37 °C and 27 °C drying temperatures, respectively. The ANOVA analysis showed that light had the greatest contribution (~81%) to the color change compared to the other three storage environment factors of temperature (~9.1%), aeration (~8%), and moisture content (~1.5%) with <10% separate effects. During storage, the R6 green and R7 semi-green soybean color continued to fade with color a-values that exceeded the initial values of the R8 matured (control) by 353% and 350%, respectively, by the end of the storage period. Low amounts of peroxide and free fatty acids (FFA) were recorded throughout the storage period. Only the FFA of 17% M.C. soybeans stored at 23.5 °C exceeded acceptable limits at the end of the storage period. Exposing immature (green and semi-green) soybeans to light resulted in the fading of the green color. Seed producers in regions prone to frost can extend harvest time by allowing immature soybeans to field-dry. Full article
22 pages, 1970 KiB  
Article
A Study of an Agricultural Indoor Robot for Harvesting Edible Bird Nests in Vietnam
AgriEngineering 2024, 6(1), 113-134; https://doi.org/10.3390/agriengineering6010008 - 12 Jan 2024
Viewed by 165
Abstract
This study demonstrates robot technology for harvesting edible bird’s nests within swiftlet houses. A comprehensive manipulator's movement analysis of harvesting operation with a separating tool is provided for precisely collecting swiftlet nests. A robotic manipulator mounted on a mobile platform with a vision [...] Read more.
This study demonstrates robot technology for harvesting edible bird’s nests within swiftlet houses. A comprehensive manipulator's movement analysis of harvesting operation with a separating tool is provided for precisely collecting swiftlet nests. A robotic manipulator mounted on a mobile platform with a vision system is also analyzed and evaluated in this study. The actual harvesting or separating the swiftlet nests is performed with visual servo feedback. The manipulator performs the gross motions of separating tools and removing the nests under computer control with velocity and position feedback. The separating principle between the objective nest and wooden frame has been applied to a demonstration removal of nests using a four-degrees-of-freedom manipulator to perform the gross movements of tool. The actual separations using this system are accomplished as fast as the manipulator can be controlled to perform the necessary deceleration and topping at the end of separating. This is typically 2.0 s. This efficiency underscores the system’s capability for swift and precise operation in harvesting an edible bird nest task. Full article
18 pages, 9158 KiB  
Article
A Novel Algorithm to Detect White Flowering Honey Trees in Mixed Forest Ecosystems Using UAV-Based RGB Imaging
AgriEngineering 2024, 6(1), 95-112; https://doi.org/10.3390/agriengineering6010007 - 11 Jan 2024
Viewed by 201
Abstract
Determining the productive potential of flowering vegetation is crucial in obtaining bee products. The application of a remote sensing approach of terrestrial objects can provide accurate information for the preparation of maps of the potential bee pasture in a given region. The study [...] Read more.
Determining the productive potential of flowering vegetation is crucial in obtaining bee products. The application of a remote sensing approach of terrestrial objects can provide accurate information for the preparation of maps of the potential bee pasture in a given region. The study is aimed at the creation of a novel algorithm to identify and distinguish white flowering honey plants, such as black locust (Robinia pseudo-acacia) and to determine the areas occupied by this forest species in mixed forest ecosystems using UAV-based RGB imaging. In our study, to determine the plant cover of black locust in mixed forest ecosystems we used a DJI (Da-Jiang Innovations, Shenzhen, China) Phantom 4 Multispectral drone with 6 multispectral cameras with 1600 × 1300 image resolution. The monitoring was conducted in the May 2023 growing season in the village of Yuper, Northeast Bulgaria. The geographical location of the experimental region is 43°32′4.02″ N and 25°45′14.10″ E at an altitude of 223 m. The UAV was used to make RGB and multispectral images of the investigated forest massifs, which were thereafter analyzed with the software product QGIS 3.0. The spectral images of the observed plants were evaluated using the newly created criteria for distinguishing white from non-white colors. The results obtained for the scanned area showed that approximately 14–15% of the area is categorized as white-flowered trees, and the remaining 86–85%—as non-white-flowered. The comparison of the developed algorithm with the Enhanced Bloom Index (EBI) approach and with supervised Support Vector Machine (SVM) classification showed that the suggested criterion is easy to understand for users with little technical experience, very accurate in identifying white blooming trees, and reduces the number of false positives and false negatives. The proposed approach of detecting and mapping the areas occupied by white flowering honey plants, such as black locust (Robinia pseudo-acacia) in mixed forest ecosystems is of great importance for beekeepers in determining the productive potential of the region and choosing a place for an apiary. Full article
(This article belongs to the Special Issue Computer Vision for Agriculture and Smart Farming)
Show Figures

Figure 1

14 pages, 3883 KiB  
Article
Improving Coffee Yield Interpolation in the Presence of Outliers Using Multivariate Geostatistics and Satellite Data
AgriEngineering 2024, 6(1), 81-94; https://doi.org/10.3390/agriengineering6010006 - 10 Jan 2024
Viewed by 286
Abstract
Precision agriculture for coffee production requires spatial knowledge of crop yield. However, difficulties in implementation lie in low-sampled areas. In addition, the asynchronicity of this crop adds complexity to the modeling. It results in a diversity of phenological stages within a field and [...] Read more.
Precision agriculture for coffee production requires spatial knowledge of crop yield. However, difficulties in implementation lie in low-sampled areas. In addition, the asynchronicity of this crop adds complexity to the modeling. It results in a diversity of phenological stages within a field and also continuous production of coffee over time. Big Data retrieved from remote sensing can be tested to improve spatial modeling. This research proposes to apply the Sentinel-2 vegetation index (NDVI) and the Sentinel-1 dual-polarization C-band Synthetic Aperture Radar (SAR) dataset as auxiliary variables in the multivariate geostatistical modeling of coffee yield characterized by the presence of outliers and assess improvement. A total of 66 coffee yield points were sampled from a 4 ha area in a quasi-regular grid located in southeastern Brazil. Ordinary kriging (OK) and block cokriging (BCOK) were applied. Overall, coupling coffee yield with the NDVI and/or SAR in BCOK interpolation improved the accuracy of spatial interpolation of coffee yield even in the presence of outliers. Incorporating Big Data for improving the modeling for low-sampled fields requires taking into account the difference in supports between different datasets since this difference can increase uncontrolled uncertainty. In this manner, we will consider, for future research, new tests with other covariates. This research has the potential to support precision agriculture applications as site-specific plant nutrient management. Full article
(This article belongs to the Special Issue Big Data Analytics in Agriculture)
Show Figures

Figure 1

17 pages, 6045 KiB  
Article
Is It Possible to Measure the Quality of Sugarcane in Real-Time during Harvesting Using Onboard NIR Spectroscopy?
AgriEngineering 2024, 6(1), 64-80; https://doi.org/10.3390/agriengineering6010005 - 09 Jan 2024
Viewed by 193
Abstract
In-field quality prediction in agricultural products is mainly based on near-infrared spectroscopy (NIR). However, initiatives applied to sugarcane quality are only observed under laboratory-controlled conditions. This study proposed a framework for NIR spectroscopy sensing to measure sugarcane quality during a real harvest operation. [...] Read more.
In-field quality prediction in agricultural products is mainly based on near-infrared spectroscopy (NIR). However, initiatives applied to sugarcane quality are only observed under laboratory-controlled conditions. This study proposed a framework for NIR spectroscopy sensing to measure sugarcane quality during a real harvest operation. A platform was built to support the system composed of the NIR sensor and external lighting on the elevator of a sugarcane harvester. Real-time data were acquired in commercial fields. Georeferenced samples were collected for calibration, validation, and adjustment of the multivariate models by partial least squares (PLS) regression. In addition, subsamples of defibrated cane were NIR-acquired for the development of calibration transfer models by piecewise direct standardization (PDS). The method allowed the adjustment of the spectra collected in real time to predict the quality properties of soluble solids content (Brix), apparent sucrose in juice (Pol), fiber, cane Pol, and total recoverable sugar (TRS). The results of the relative mean square error of prediction (RRMSEP) were from 1.80 to 2.14%, and the ratio of interquartile performance (RPIQ) was from 1.79 to 2.46. The PLS-PDS models were applied to data acquired in real-time, allowing estimation of quality properties and identification of the existence of spatial variability in quality. The results showed that it is possible to monitor the spatial variability of quality properties in sugarcane in the field. Future studies with a broader range of quality attribute values and the evaluation of different configurations for sensing devices, calibration methods, and data processing are needed. The findings of this research will enable a valuable spatial information layer for the sugarcane industry, whether for agronomic decision-making, industrial operational planning, or financial management between sugar mills and suppliers. Full article
(This article belongs to the Topic Current Research on Intelligent Equipment for Agriculture)
Show Figures

Figure 1

12 pages, 3345 KiB  
Article
Determination of Dry-Matter Content of Kiwifruit before Harvest Based on Hyperspectral Imaging
AgriEngineering 2024, 6(1), 52-63; https://doi.org/10.3390/agriengineering6010004 - 08 Jan 2024
Viewed by 221
Abstract
Determining pre-harvest fruit maturity is vital to ensure the quality of kiwifruit, and dry-matter content is an important indicator of kiwifruit ripeness. To predict the pre-harvest dry-matter content of kiwifruit continuously in real-time with high accuracy, this study uses hyperspectral data of pre-harvest [...] Read more.
Determining pre-harvest fruit maturity is vital to ensure the quality of kiwifruit, and dry-matter content is an important indicator of kiwifruit ripeness. To predict the pre-harvest dry-matter content of kiwifruit continuously in real-time with high accuracy, this study uses hyperspectral data of pre-harvest Jintao kiwifruit obtained by using a hyperspectral image acquisition device. The raw data underwent whiteboard correction, spectral data extraction, spectral pre-processing, and feature-band extraction, following which the dry-matter content of the fruit was predicted by using partial least squares (PLS) regression. The feature bands extracted by the random frog method were 538.93, 671.14, 693.41, 770.61, 796.98, 813.24, 841.21, 843.29, and 856.80 nm, which improve the accuracy of the PLS method for predicting dry-matter content, with R2 = 0.92 and a root mean square error (RMSE) of 0.41% for the training set, and R2 = 0.85 and a RMSE of 0.50% for the test set. These results show that the proposed method reduces the number of required bands while maintaining the prediction accuracy, thereby demonstrating the reliability of using hyperspectral data to predict the pre-harvest dry-matter content of kiwifruit. This method can effectively guide the management of kiwifruit harvesting period, establishing a theoretical foundation for precise unmanned harvesting. Full article
Show Figures

Figure 1

18 pages, 866 KiB  
Article
The Influencing Factors Analysis of Aquaculture Mechanization Development in Liaoning, China
AgriEngineering 2024, 6(1), 34-51; https://doi.org/10.3390/agriengineering6010003 - 08 Jan 2024
Viewed by 245
Abstract
Promoting the mechanization of aquaculture is one of the most important supporting measures to ensure the high-quality development of the aquaculture industry in China. In order to solve the problems of predominantly manual work and to decrease the costs of aquaculture, the influencing [...] Read more.
Promoting the mechanization of aquaculture is one of the most important supporting measures to ensure the high-quality development of the aquaculture industry in China. In order to solve the problems of predominantly manual work and to decrease the costs of aquaculture, the influencing factors of China’s aquaculture mechanization were systematically analyzed. The triple bottom theory was selected, and three aspects were identified, including environmental, economic, and social aspects. Through the literature review, the Delphi method, and the analytic hierarchy process, the comprehensive evaluation indicator system, including 18 influencing factors, was proposed. Moreover, the fuzzy comprehensive evaluation method was combined with the model to solve the evaluation results. A case study in Liaoning Province was offered and, according to the analysis results, the economic aspect at the first level was the most critical factor; the financial subsidy for the purchase of aquaculture machinery, the energy consumption of the machinery and equipment, and the promotion and use of aquaculture technology were the most important factors and had the greatest impact on the development of aquaculture mechanization in China. The effective implementation paths and countermeasures were proposed, such as the promotion of mechanized equipment and the enhancement of the machinery purchase subsidies, in order to provide an important decision-making basis for the improvement of the level of aquaculture mechanization. Full article
Show Figures

Figure 1

15 pages, 5354 KiB  
Article
Integrating Satellite and UAV Technologies for Maize Plant Height Estimation Using Advanced Machine Learning
AgriEngineering 2024, 6(1), 20-33; https://doi.org/10.3390/agriengineering6010002 - 05 Jan 2024
Viewed by 373
Abstract
The integration of aerial monitoring, utilizing both unmanned aerial vehicles (UAVs) and satellites, alongside sophisticated machine learning algorithms, has witnessed a burgeoning prevalence within contemporary agricultural frameworks. This study endeavors to systematically explore the inherent potential encapsulated in high-resolution satellite imagery, concomitantly accompanied [...] Read more.
The integration of aerial monitoring, utilizing both unmanned aerial vehicles (UAVs) and satellites, alongside sophisticated machine learning algorithms, has witnessed a burgeoning prevalence within contemporary agricultural frameworks. This study endeavors to systematically explore the inherent potential encapsulated in high-resolution satellite imagery, concomitantly accompanied by an RGB camera seamlessly integrated into an UAV. The overarching objective is to elucidate the viability of this technological amalgamation for accurate maize plant height estimation, facilitated by the application of advanced machine learning algorithms. The research involves the computation of key vegetation indices—NDVI, NDRE, and GNDVI—extracted from PlanetScope satellite images. Concurrently, UAV-based plant height estimation is executed using digital elevation models (DEMs). Data acquisition encompasses images captured on days 20, 29, 37, 44, 50, 61, and 71 post-sowing. The study yields compelling results: (1) Maize plant height, derived from DEMs, demonstrates a robust correlation with manual field measurements (r = 0.96) and establishes noteworthy associations with NDVI (r = 0.80), NDRE (r = 0.78), and GNDVI (r = 0.81). (2) The random forest (RF) model emerges as the frontrunner, displaying the most pronounced correlations between observed and estimated height values (r = 0.99). Additionally, the RF model’s superiority extends to performance metrics when fueled by input parameters, NDVI, NDRE, and GNDVI. This research underscores the transformative potential of combining satellite imagery, UAV technology, and machine learning for precision agriculture and maize plant height estimation. Full article
(This article belongs to the Special Issue Remote Sensing-Based Machine Learning Applications in Agriculture)
Show Figures

Figure 1

19 pages, 5675 KiB  
Technical Note
Cotton Gin Stand Machine-Vision Inspection and Removal System for Plastic Contamination: Hand Intrusion Sensor Design
AgriEngineering 2024, 6(1), 1-19; https://doi.org/10.3390/agriengineering6010001 - 22 Dec 2023
Viewed by 353
Abstract
Plastic contamination in cotton lint poses significant challenges to the U.S. cotton industry, with plastic wrap from John Deere round module harvesters being a primary contaminant. Despite efforts to manually remove this plastic during module unwrapping, some inevitably enters the cotton gin’s processing [...] Read more.
Plastic contamination in cotton lint poses significant challenges to the U.S. cotton industry, with plastic wrap from John Deere round module harvesters being a primary contaminant. Despite efforts to manually remove this plastic during module unwrapping, some inevitably enters the cotton gin’s processing system. To address this, a machine-vision detection and removal system has been developed. This system uses inexpensive color cameras to identify plastic on the gin stand feeder apron, triggering a mechanism that expels the plastic from the cotton stream. However, the system, composed of 30–50 Linux-based ARM computers, requires substantial effort for calibration and tuning and presents a technological barrier for typical cotton gin workers. This research aims to transition the system to a more user-friendly, plug-and-play model by implementing an auto-calibration function. The proposed function dynamically tracks cotton colors while excluding plastic images that could hinder performance. A critical component of this auto-calibration algorithm is the hand intrusion detector, or “HID”, which is discussed in this paper. In the normal operation of a cotton gin, the gin personnel periodically have to clear the machine, which entails running a stick or their arm/hand under the detection cameras. This results in the system capturing a false positive, which interferes with the ability of auto-calibration algorithms to function correctly. Hence, there is a critical need for an HID to remove these false positives from the record. The anticipated benefits of the auto-calibration function include reduced setup and maintenance overhead, less reliance on skilled personnel, and enhanced adoption of the plastic removal system within the cotton ginning industry. Full article
Show Figures

Figure 1

20 pages, 1902 KiB  
Article
Coffee Growing with Remotely Piloted Aircraft System: Bibliometric Review
AgriEngineering 2023, 5(4), 2458-2477; https://doi.org/10.3390/agriengineering5040151 - 15 Dec 2023
Viewed by 400
Abstract
Remotely piloted aircraft systems (RPASs) have gained prominence in recent decades primarily due to their versatility of application in various sectors of the economy. In the agricultural sector, they stand out for optimizing processes, contributing to improved sampling, measurements, and operational efficiency, ultimately [...] Read more.
Remotely piloted aircraft systems (RPASs) have gained prominence in recent decades primarily due to their versatility of application in various sectors of the economy. In the agricultural sector, they stand out for optimizing processes, contributing to improved sampling, measurements, and operational efficiency, ultimately leading to increased profitability in crop production. This technology is becoming a reality in coffee farming, an essential commodity in the global economic balance, mainly due to academic attention and applicability. This study presents a bibliometric analysis focused on using RPASs in coffee farming to structure the existing academic literature and reveal trends and insights into the research topic. For this purpose, searches were conducted over the last 20 years (2002 to 2022) in the Web of Science and Scopus scientific databases. Subsequently, bibliometric analysis was applied using Biblioshiny for Bibliometrix software in R (version 2022.07.1), with emphasis on the temporal evolution of research on the topic, performance analysis highlighting key publications, journals, researchers, institutions, countries, and the scientific mapping of co-authorship, keywords, and future trends/possibilities. The results revealed 42 publications on the topic, with the pioneering studies being the most cited. Brazilian researchers and institutions (Federal University of Lavras) have a strong presence in publications on the subject and in journals focusing on technological applications. As future trends and possibilities, the employment of technology optimizes the productivity and profitability studies of coffee farming for the timely and efficient application of aerial imaging. Full article
Show Figures

Figure 1

19 pages, 4016 KiB  
Article
Harnessing Solar Energy: A Novel Hybrid Solar Dryer for Efficient Fish Waste Processing
AgriEngineering 2023, 5(4), 2439-2457; https://doi.org/10.3390/agriengineering5040150 - 15 Dec 2023
Viewed by 409
Abstract
Facing severe climate change, preserving the environment, and promoting sustainable development necessitate innovative global solutions such as waste recycling, extracting value-added by-products, and transitioning from traditional to renewable energy sources. Accordingly, this study aims to repurpose fish waste into valuable, nutritionally rich products [...] Read more.
Facing severe climate change, preserving the environment, and promoting sustainable development necessitate innovative global solutions such as waste recycling, extracting value-added by-products, and transitioning from traditional to renewable energy sources. Accordingly, this study aims to repurpose fish waste into valuable, nutritionally rich products and extract essential chemical compounds such as proteins and oils using a newly developed hybrid solar dryer (HSD). This proposed HSD aims to produce thermal energy for drying fish waste through the combined use of solar collectors and solar panels. The HSD, primarily composed of a solar collector, drying chamber, auxiliary heating system, solar panels, battery, pump, heating tank, control panel, and charging unit, has been designed for the effective drying of fish waste. We subjected the fish waste samples to controlled drying at three distinct temperatures: 45, 50, and 55 °C. The results indicated a reduction in moisture content from 75.2% to 24.8% within drying times of 10, 7, and 5 h, respectively, at these temperatures. Moreover, maximum drying rates of 1.10, 1.22, and 1.41 kgH2O/kg dry material/h were recorded at 45, 50, and 55 °C, respectively. Remarkable energy efficiency was also observed in the HSD’s operation, with savings of 79.2%, 75.8%, and 62.2% at each respective temperature. Notably, with an increase in drying temperature, the microbial load, crude lipid, and moisture content decreased, while the crude protein and ash content increased. The outcomes of this study indicate that the practical, solar-powered HSD can recycle fish waste, enhance its value, and reduce the carbon footprint of processing operations. This sustainable approach, underpinned by renewable energy, offers significant environmental preservation and a reduction in fossil fuel reliance for industrial operations. Full article
Show Figures

Figure 1

16 pages, 3660 KiB  
Article
Dynamic Behavior Forecast of an Experimental Indirect Solar Dryer Using an Artificial Neural Network
AgriEngineering 2023, 5(4), 2423-2438; https://doi.org/10.3390/agriengineering5040149 - 14 Dec 2023
Viewed by 562
Abstract
This research presents the prediction of temperatures in the chamber of a solar dryer using artificial neural networks (ANN). The dryer is a forced-flow type and indirect. Climatic conditions, temperatures, airflow, and geometric parameters were considered to build the ANN model. The model [...] Read more.
This research presents the prediction of temperatures in the chamber of a solar dryer using artificial neural networks (ANN). The dryer is a forced-flow type and indirect. Climatic conditions, temperatures, airflow, and geometric parameters were considered to build the ANN model. The model was a feed-forward network trained using a backpropagation algorithm and Levenberg–Marquardt optimization. The configuration of the optimal neural network to carry out the verification and validation processes was nine neurons in the input layer, one in the output layer, and two hidden layers of thirteen and twelve neurons each (9-13-12-1). The percentage error of the predictive model was below 1%. The predictive model has been successfully tested, achieving a predictor with good capabilities. This consistency is reflected in the relative error between the predicted and experimental temperatures. The error is below 0.25% for the model’s verification and validation. Moreover, this model could be the basis for developing a powerful real-time operation optimization tool and the optimal design for indirect solar dryers to reduce cost and time in food-drying processes. Full article
(This article belongs to the Special Issue Application of Artificial Neural Network in Agriculture)
Show Figures

Figure 1

15 pages, 2506 KiB  
Article
Validation of Criteria for Predicting Tractor Fuel Consumption and CO2 Emissions When Ploughing Fields of Different Shapes and Dimensions
AgriEngineering 2023, 5(4), 2408-2422; https://doi.org/10.3390/agriengineering5040148 - 12 Dec 2023
Viewed by 467
Abstract
Climate change is linked to CO2 emissions, the reduction of which has become a top priority. In response to these circumstances, scientists must constantly develop new technologies that increase fuel efficiency and reduce emissions. Agriculture today is dominated by arable fields of [...] Read more.
Climate change is linked to CO2 emissions, the reduction of which has become a top priority. In response to these circumstances, scientists must constantly develop new technologies that increase fuel efficiency and reduce emissions. Agriculture today is dominated by arable fields of various sizes, shapes, and dimensions, and to achieve fuel economy and environmental impact requirements, it is not enough to know only the principles of optimization of tillage processes; it is also necessary to understand the influence of field size and its shape and dimensions on tillage performance. The purpose of this research is to present a methodology that allows predicting tractor fuel demand and CO2 emissions per unit of ploughed area when ploughing field plots with different shapes and dimensions and to confirm a suitable variable for such a prediction. Theoretical calculations and experimental tests have shown that the field ploughing time efficiency coefficient is a useful metric for comparing field plots of different shapes and dimensions. This coefficient effectively describes tractor fuel consumption and CO2 emissions during ploughing operations on differently configured field plots. A reasonable method for calculating the real field ploughing time efficiency coefficient is based on field and tillage data and a practical determination method using tractor engine load reports. It was found that during the research, when ploughing six field plots of different shapes and dimensions, with an area of 6 ha, the field ploughing time efficiency coefficient varied from 0.68 to 0.82, and fuel consumption between 15.6 and 16.5 kg/ha. In the field plot of 6 ha, where the field ploughing time efficiency coefficient was 15% higher, the fuel consumption per unit area was lower by about 5.5%. The results of this study will help to effectively predict tillage time and tractor fuel consumption required for different field shapes and dimensions. Full article
Show Figures

Figure 1

13 pages, 4562 KiB  
Article
Coconut Mesocarp Extracts to Control Fusarium musae, the Causal Agent of Banana Fruit and Crown Rot
AgriEngineering 2023, 5(4), 2395-2407; https://doi.org/10.3390/agriengineering5040147 - 11 Dec 2023
Viewed by 489
Abstract
Crown rot, caused by Fusarium species, is the most devastating postharvest disease in bananas. Fungicides are traditionally applied as a postharvest treatment to control crown rot in bananas. However, there is a need to research environmentally friendly compounds as postharvest treatments instead of [...] Read more.
Crown rot, caused by Fusarium species, is the most devastating postharvest disease in bananas. Fungicides are traditionally applied as a postharvest treatment to control crown rot in bananas. However, there is a need to research environmentally friendly compounds as postharvest treatments instead of chemical fungicides. The phenolic compounds gallic acid, protocatechuic acid, and chlorogenic acid were identified in coconut mesocarp extract. Overall, the treatments were more efficient in crown-based than fruit-based culture mediums. The mycelial development was inhibited in a range from 20 to 26% (applying coconut mesocarp extract at 5%) compared to the control. Sporulation and spore germination were significantly inhibited, with a reduction of 88% in spore production and 91% in spore germination inhibition compared to the control. In in vivo tests, the aqueous extracts were effective by limiting the percentage of infected fruit, crown rot, and fruit severity. The use of coconut mesocarp extracts can be an effective and environmentally friendly alternative to the use of fungicides for controlling Fusarium musae on bananas. Full article
(This article belongs to the Special Issue Novel Methods for Food Product Preservation)
Show Figures

Figure 1

14 pages, 661 KiB  
Article
A Transfer Learning-Based Deep Convolutional Neural Network for Detection of Fusarium Wilt in Banana Crops
AgriEngineering 2023, 5(4), 2381-2394; https://doi.org/10.3390/agriengineering5040146 - 11 Dec 2023
Viewed by 612
Abstract
During the 1950s, the Gros Michel species of bananas were nearly wiped out by the incurable Fusarium Wilt, also known as Panama Disease. Originating in Southeast Asia, Fusarium Wilt is a banana pandemic that has been threatening the multi-billion-dollar banana industry worldwide. The [...] Read more.
During the 1950s, the Gros Michel species of bananas were nearly wiped out by the incurable Fusarium Wilt, also known as Panama Disease. Originating in Southeast Asia, Fusarium Wilt is a banana pandemic that has been threatening the multi-billion-dollar banana industry worldwide. The disease is caused by a fungus that spreads rapidly throughout the soil and into the roots of banana plants. Currently, the only way to stop the spread of this disease is for farmers to manually inspect and remove infected plants as quickly as possible, which is a time-consuming process. The main purpose of this study is to build a deep Convolutional Neural Network (CNN) using a transfer learning approach to rapidly identify Fusarium wilt infections on banana crop leaves. We chose to use the ResNet50 architecture as the base CNN model for our transfer learning approach owing to its remarkable performance in image classification, which was demonstrated through its victory in the ImageNet competition. After its initial training and fine-tuning on a data set consisting of 600 healthy and diseased images, the CNN model achieved near-perfect accuracy of 0.99 along with a loss of 0.46 and was fine-tuned to adapt the ResNet base model. ResNet50’s distinctive residual block structure could be the reason behind these results. To evaluate this CNN model, 500 test images, consisting of 250 diseased and healthy banana leaf images, were classified by the model. The deep CNN model was able to achieve an accuracy of 0.98 and an F-1 score of 0.98 by correctly identifying the class of 492 of the 500 images. These results show that this DCNN model outperforms existing models such as Sangeetha et al., 2023’s deep CNN model by at least 0.07 in accuracy and is a viable option for identifying Fusarium Wilt in banana crops. Full article
(This article belongs to the Special Issue Application of Artificial Neural Network in Agriculture)
Show Figures

Figure 1

Back to TopTop