Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,697)

Search Parameters:
Journal = Metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6619 KiB  
Article
Metabolic Adaptations in Rapeseed: Hemin-Induced Resilience to NaCl Stress by Enhancing Growth, Photosynthesis, and Cellular Defense Ability
Metabolites 2024, 14(1), 57; https://doi.org/10.3390/metabo14010057 - 15 Jan 2024
Viewed by 88
Abstract
This study aimed to investigate whether presoaking with hemin (5 μmol·L−1) could alleviate NaCl stress during rapeseed seedlings’ growth and its role in the regulation of photosynthesis. In this experiment, ‘HUAYOUZA 62 (HYZ 62)’ and ‘HUAYOUZA 158R (158R)’ were used as [...] Read more.
This study aimed to investigate whether presoaking with hemin (5 μmol·L−1) could alleviate NaCl stress during rapeseed seedlings’ growth and its role in the regulation of photosynthesis. In this experiment, ‘HUAYOUZA 62 (HYZ 62)’ and ‘HUAYOUZA 158R (158R)’ were used as materials for pot experiments to study the morphology, photosynthetic characteristics, antioxidant activity, and osmoregulatory factors of seedlings under different salt concentrations, as well as the regulatory effects of hemin-presoaked seeds. Our findings revealed that, compared the control, NaCl stress inhibited the growth of two rapeseed varieties, decreased the seedling emergence rate, and increased the content of malondialdehyde (MDA), the electrolyte leakage rate (EL) and antioxidant enzyme activity. Hemin soaking alleviated the adverse effects of salt stress and increased plant height, root elongation and dry matter accumulation. Compared with all NaCl treatments, hemin significantly enhanced photosynthetic indexes, including a percent increase of 12.99–24.36% and 5.39–16.52% in net photosynthetic rate (Pn), 17.86–48.08% and 8.6–23.44% in stomatal conductivity (Gs), and 15.42–37.94% and 11.09–19.08% in transpiration rate (Tr) for HYZ62 and 158R, respectively. Moreover, hemin soaking also increased antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), reducing the malondialdehyde, and thus resulting in the alleviation of oxidative damage caused by NaCl stress. Furthermore, hemin stimulated the formation of soluble protein, which effectively regulated the osmo-protective qualities. The current findings strongly elucidate that hemin soaking could effectively alleviate the negative impacts of NaCl stress by regulating the morphological, photosynthetic, and antioxidant traits. This study provides a new idea regarding the effect of Hemin on the salt tolerance of rapeseed, and provides a basis for the practical application of Hemin in saline–alkali soil to improve the salt tolerance of cultivated rapeseed. Full article
(This article belongs to the Special Issue Effects of Biotic/Abiotic Stress on Plant Metabolism)
Show Figures

Figure 1

10 pages, 688 KiB  
Article
Obesity in Pregnancy as a Risk Factor in Maternal and Child Health—A Retrospective Cohort Study
Metabolites 2024, 14(1), 56; https://doi.org/10.3390/metabo14010056 - 15 Jan 2024
Viewed by 67
Abstract
The prevalence of overweight and obesity has risen dramatically in the last few years. This has led to an increase in both conditions in pregnant women. Obesity and overweight are associated with complications for both the mother and the newborn. The aim of [...] Read more.
The prevalence of overweight and obesity has risen dramatically in the last few years. This has led to an increase in both conditions in pregnant women. Obesity and overweight are associated with complications for both the mother and the newborn. The aim of this study is to determine the prevalence of obesity and its association with the risk of complications during pregnancy. Materials and Methods: We conducted a retrospective cohort study of pregnant women who delivered from 1 January 2012 to 31 December 2018. Results: A higher prevalence of obesity is observed in the group of women aged 35 or older. Women with a BMI > 25 present a higher risk of cesarean section (aOR 1.49, 95% CI: 1.37–1.61), preeclampsia (aOR 1.64, 95% CI: 1.19–2.26), high-risk pregnancy (aOR 2.34, 95% CI: 1.68–2.6), Apgar < 7 at one minute (aOR 1.53, 95% CI: 1.25–1.89) and macrosomia (aOR 2.08, 95% CI: 1.83–2.37). Maternal overweight and obesity are important determinants of the risk of complications for both the mother and the newborn. Full article
Show Figures

Figure 1

15 pages, 1785 KiB  
Article
Measurement of Oxidative Stress Index (OSI) in Penile Corpora Cavernosa and Peripheral Blood of Peyronie’s Disease Patients: A Report of 49 Cases
Metabolites 2024, 14(1), 55; https://doi.org/10.3390/metabo14010055 - 15 Jan 2024
Viewed by 167
Abstract
Peyronie’s disease (PD) is a chronic inflammatory disease affecting the penile albuginea. Oxidative stress (OS) is important for the development of the disease; therefore, it seemed interesting to us to directly measure OS at both the site of the disease and in peripheral [...] Read more.
Peyronie’s disease (PD) is a chronic inflammatory disease affecting the penile albuginea. Oxidative stress (OS) is important for the development of the disease; therefore, it seemed interesting to us to directly measure OS at both the site of the disease and in peripheral blood. For a precise OS study, it is necessary to evaluate not only the single results of the total oxidant status (TOS) and total antioxidant status (TAS) but also their ratio: OS index (OSI) (arbitrary unit) = TOS/TAS × 100. This study included 49 PD patients examined and diagnosed in our Peyronie’s care center and a control group of 50 cases. We collected blood samples from both the penis and a vein in the upper extremity; we used d-ROMs and PAT-test (FRAS kit) for OS measurement. Pearson’s study found a statistical correlation between penile OSI values and PD plaque volumes: p-value = 0.002. No correlation was found between systemic OSI values and PD plaque volumes: p-value = 0.27. Penile OSI values were significantly reduced after the elimination of the PD plaque (p < 0.00001). The mean value of the penile OSI indices in the PD patients after plaque elimination corresponded to 0.090 ± 0.016 (p = 0.004). The comparison between the penile OSI values of the PD patients (with plaque elimination) and the control group revealed no statistically significant differences (p = 0.130). The absence of a correlation between Peyronie’s plaque volume and systemic OSI values indicates that it is preferable to carry out the OS study by taking a sample directly from the site of the disease. By carrying out a penile OSI study, it would be possible to obtain a precise plaque-volume-dependent oxidative marker. Even if the study did not demonstrate any correlation between OSI indices and anxious–depressive state, we detected a high prevalence of anxiety (81.6%) and depression (59.1%) in PD patients. Full article
(This article belongs to the Special Issue Exploring Oxidative Stress Biomarkers in Human Disease)
Show Figures

Figure 1

43 pages, 1214 KiB  
Review
Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review
Metabolites 2024, 14(1), 54; https://doi.org/10.3390/metabo14010054 - 14 Jan 2024
Viewed by 206
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers [...] Read more.
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application. Full article
Show Figures

Figure 1

26 pages, 6562 KiB  
Article
Metabolomic Signatures of Brainstem in Mice following Acute and Subchronic Hydrogen Sulfide Exposure
Metabolites 2024, 14(1), 53; https://doi.org/10.3390/metabo14010053 - 14 Jan 2024
Viewed by 198
Abstract
Hydrogen sulfide (H2S) is an environmental toxicant of significant health concern. The brain is a major target in acute H2S poisoning. This study was conducted to test the hypothesis that acute and subchronic ambient H2S exposures alter [...] Read more.
Hydrogen sulfide (H2S) is an environmental toxicant of significant health concern. The brain is a major target in acute H2S poisoning. This study was conducted to test the hypothesis that acute and subchronic ambient H2S exposures alter the brain metabolome. Male 7–8-week-old C57BL/6J mice were exposed by whole-body inhalation to 1000 ppm H2S for 45 min and euthanized at 5 min or 72 h for acute exposure. For subchronic study, mice were exposed to 5 ppm H2S 2 h/day, 5 days/week for 5 weeks. Control mice were exposed to room air. The brainstem was removed for metabolomic analysis. Enrichment analysis showed that the metabolomic profiles in acute and subchronic H2S exposures matched with those of cerebral spinal fluid from patients with seizures or Alzheimer’s disease. Acute H2S exposure decreased excitatory neurotransmitters, aspartate, and glutamate, while the inhibitory neurotransmitter, serotonin, was increased. Branched-chain amino acids and glucose were increased by acute H2S exposure. Subchronic H2S exposure within OSHA guidelines surprisingly decreased serotonin concentration. In subchronic H2S exposure, glucose was decreased, while polyunsaturated fatty acids, inosine, and hypoxanthine were increased. Collectively, these results provide important mechanistic clues for acute and subchronic ambient H2S poisoning and show that H2S alters brainstem metabolome. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

14 pages, 1065 KiB  
Article
Performance Evaluation of a Novel Non-Invasive Test for the Detection of Advanced Liver Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease
Metabolites 2024, 14(1), 52; https://doi.org/10.3390/metabo14010052 - 14 Jan 2024
Viewed by 166
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) may progress to advanced liver fibrosis (ALF). We evaluated the diagnostic accuracy of a novel Liver Fibrosis Risk Index (LFRI) in MAFLD subjects using transient elastography (TE) as the reference method for liver fibrosis measurement and then [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD) may progress to advanced liver fibrosis (ALF). We evaluated the diagnostic accuracy of a novel Liver Fibrosis Risk Index (LFRI) in MAFLD subjects using transient elastography (TE) as the reference method for liver fibrosis measurement and then the diagnostic performance of a new two-step non-invasive algorithm for the detection of ALF risk in MAFLD, using Fibrosis-4 (FIB-4) followed by LFRI and comparing it to the reference algorithm based on FIB-4 and TE. We conducted a prospective study on 104 MAFLD European adult subjects. All consenting subjects underwent TE and measurements of FIB-4 and LFRI. For FIB-4 and TE, validated cut-offs were used. An ROC analysis showed that LFRI diagnosed severe fibrosis with moderate accuracy in MAFLD subjects with a negative predictive value above 90%. Using the new algorithm with LFRI thresholds recommended by the manufacturer, the number of subjects classified into ALF risk groups (low, intermediate, or high) differed significantly when compared with the reference algorithm (p = 0.001), with moderate agreement between them (weighted kappa (95% CI) = 0.59 (0.41–0.77)). To improve the performance of the LFRI-based algorithm, we modified cut-off points based on ROC curves obtained by dividing the study population according to the reference algorithm and observed no difference between algorithms (p = 0.054) in categorizing ALF risk, with a slight increase in the total agreement (weighted kappa (95% CI) = 0.63 (0.44–0.82)). Our findings suggest that using the novel LFRI as a second-line test may represent a potential alternative for liver fibrosis risk stratification in MAFLD patients; however, modified cut-offs are needed to optimize its performance. Full article
(This article belongs to the Special Issue New Biomarkers for Diagnostics in Metabolic Diseases)
Show Figures

Figure 1

22 pages, 54118 KiB  
Article
Integrating TCGA and Single-Cell Sequencing Data for Hepatocellular Carcinoma: A Novel Glycosylation (GLY)/Tumor Microenvironment (TME) Classifier to Predict Prognosis and Immunotherapy Response
Metabolites 2024, 14(1), 51; https://doi.org/10.3390/metabo14010051 - 13 Jan 2024
Viewed by 255
Abstract
The major liver cancer subtype is hepatocellular carcinoma (HCC). Studies have indicated that a better prognosis is related to the presence of tumor-infiltrating lymphocytes (TILs) in HCC. However, the molecular pathways that drive immune cell variation in the tumor microenvironment (TME) remain poorly [...] Read more.
The major liver cancer subtype is hepatocellular carcinoma (HCC). Studies have indicated that a better prognosis is related to the presence of tumor-infiltrating lymphocytes (TILs) in HCC. However, the molecular pathways that drive immune cell variation in the tumor microenvironment (TME) remain poorly understood. Glycosylation (GLY)-related genes have a vital function in the pathogenesis of numerous tumors, including HCC. This study aimed to develop a GLY/TME classifier based on glycosylation-related gene scores and tumor microenvironment scores to provide a novel prognostic model to improve the prediction of clinical outcomes. The reliability of the signatures was assessed using receiver operating characteristic (ROC) and survival analyses and was verified with external datasets. Furthermore, the correlation between glycosylation-related genes and other cells in the immune environment, the immune signature of the GLY/TME classifier, and the efficacy of immunotherapy were also investigated. The GLY score low/TME score high subgroup showed a favorable prognosis and therapeutic response based on significant differences in immune-related molecules and cancer cell signaling mechanisms. We evaluated the prognostic role of the GLY/TME classifier that demonstrated overall prognostic significance for prognosis and therapeutic response before treatment, which may provide new options for creating the best possible therapeutic approaches for patients. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Figure 1

20 pages, 4215 KiB  
Article
Metabolomic Changes in Rat Serum after Chronic Exposure to Glyphosate-Based Herbicide
Metabolites 2024, 14(1), 50; https://doi.org/10.3390/metabo14010050 - 13 Jan 2024
Viewed by 362
Abstract
Glyphosate-based herbicides (GBHs) have gained extensive popularity in recent decades. For many years, glyphosate has been regarded as harmless or minimally toxic to mammals due to the absence of its primary target, the shikimic acid pathway in humans. Nonetheless, mounting evidence suggests that [...] Read more.
Glyphosate-based herbicides (GBHs) have gained extensive popularity in recent decades. For many years, glyphosate has been regarded as harmless or minimally toxic to mammals due to the absence of its primary target, the shikimic acid pathway in humans. Nonetheless, mounting evidence suggests that glyphosate may cause adverse health effects in humans via other mechanisms. In this study, we described the metabolomic changes in the serum of experimental rats exposed to chronic GBH using the highly sensitive LC-MS/MS technique. We investigated the possible relationship between chronic exposure to GBH and neurological disorders. Our findings suggest that chronic exposure to GBH can alter spatial learning memory and the expression of some important metabolites that are linked to neurophysiological disorders in young rats, with the female rats showing higher susceptibility compared to the males. This indicates that female rats are more likely to show early symptoms of the disorder on exposure to chronic GBH compared to male rats. We observed that four important metabolites (paraxanthine, epinephrine, L-(+)-arginine, and D-arginine) showed significant changes and involvement in neurological changes as suggested by ingenuity pathway analysis. In conclusion, our results indicate that chronic exposure to GBH can increase the risk of developing neurological disorders. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

17 pages, 4423 KiB  
Article
Metabolic Regulations of Smilax china L. against β-Amyloid Toxicity in Caenorhabditis elegans
Metabolites 2024, 14(1), 49; https://doi.org/10.3390/metabo14010049 - 13 Jan 2024
Viewed by 175
Abstract
Smilax china L. (Chinaroot) is a natural herb that has multiple uses, such as being used to make tea and food. Both its roots and leaves have different uses due to their unique components. In this study, we analyzed the extract of S. [...] Read more.
Smilax china L. (Chinaroot) is a natural herb that has multiple uses, such as being used to make tea and food. Both its roots and leaves have different uses due to their unique components. In this study, we analyzed the extract of S. china. roots using LC-HRMS and evaluated the neuroprotective effects and metabolic regulation of S. china on Caenorhabditis elegans. Chinaroot extract prolonged the life span of healthy nematodes, delayed the paralysis time of transgenic CL4176, and reduced the level of β-amyloid deposition in transgenic CL2006. The comprehensive analysis of metabolomics and qRT-PCR revealed that Chinaroot extract exerted neuroprotective effects through the valine, leucine and isoleucine degradation and fatty acid degradation pathways. Moreover, we first discovered that the expressions of T09B4.8, ech-7, and agxt-1 were linked to the neuroprotective effects of Chinaroot. The material exerted neuroprotective effects by modulating metabolic abnormalities in AD model C. elegans. Our study provides a new foundation for the development of functional food properties and functions. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

27 pages, 7124 KiB  
Article
Longitudinal Distribution Map of the Active Components and Endophytic Fungi in Angelica sinensis (Oliv.) Diels Root and Their Potential Correlations
Metabolites 2024, 14(1), 48; https://doi.org/10.3390/metabo14010048 - 12 Jan 2024
Viewed by 189
Abstract
The three distinct medicinal parts of Angelica sinensis (Oliv.) Diels (Ang) roots are the head, body, and tail (ARH, ARB, and ART, respectively). How endophytic fungi shape the differences in metabolic components among these parts remains unclear. We quantified the distribution of active [...] Read more.
The three distinct medicinal parts of Angelica sinensis (Oliv.) Diels (Ang) roots are the head, body, and tail (ARH, ARB, and ART, respectively). How endophytic fungi shape the differences in metabolic components among these parts remains unclear. We quantified the distribution of active components and endophytic fungi along the ARH, ARB, and ART and their relationships. Based on the metabolic components and their abundances detected via non-target metabolism, the different medicinal parts were distinguishable. The largest number of dominant metabolic components was present in ART. The difference between ART and ARH was the greatest, and ARB was in a transitional state. The dominant active molecules in ART highlight their effects in haemodynamics improvement, antibacterial, anti-inflammatory, and hormone regulation, while ARH and ARB indicated more haemostasis, blood enrichment, neuromodulation, neuroprotection and tranquilisation, hepatoprotection, and antitumour activities than that of ART. The ARHs, ARBs, and ARTs can also be distinguished from each other based on the endophytic fungi at the microbiome level. The most dominant endophytic fungi were distributed in ART; the differences between ART and ARH were the largest, and ARB was in a transition state, which is consistent with the metabolite distributions. Structural equation modelling showed that the endophytic fungi were highly indicative of the metabolic components. Correlation analysis further identified the endophytic fungi significantly positively correlated with important active components, including Condenascus tortuosus, Sodiomyces alcalophilus, and Pleotrichocladium opacum. The bidirectional multivariate interactions between endophytic fungi and the metabolic components shape their spatial variations along the longitudinal direction in the Ang root. Full article
(This article belongs to the Special Issue Progress in Metabolomic Analysis in Medicinal Plants)
Show Figures

Figure 1

11 pages, 1576 KiB  
Article
Blood Glucose Levels during Decathlon Competition: An Observational Study in Timing of Intake and Competing Time
Metabolites 2024, 14(1), 47; https://doi.org/10.3390/metabo14010047 - 12 Jan 2024
Viewed by 211
Abstract
During a men’s decathlon, a combined event conducted over two consecutive days, fluctuations in blood glucose were measured using flash glucose monitoring. Because decathletes repeatedly intake and exercise, high and low blood glucose levels are observed, but the actual conditions have not yet [...] Read more.
During a men’s decathlon, a combined event conducted over two consecutive days, fluctuations in blood glucose were measured using flash glucose monitoring. Because decathletes repeatedly intake and exercise, high and low blood glucose levels are observed, but the actual conditions have not yet been clarified. Low blood glucose levels (<80 mg/dL) were observed in nine athletes, while high blood glucose levels (>139 mg/dL) were observed in all athletes at least once during the competition days. Furthermore, low blood glucose levels were observed in nine athletes at least once during and after intake (“intake” refers to consuming energy-containing food and beverages). Additionally, high blood glucose levels were observed in nine athletes at least once during and after intake. Five athletes had low blood glucose during competing time. It was suggested that even if they had eaten a meal just prior to the competition, their intake was likely insufficient for their energy expenditure. A significant positive correlation was found between the mean blood glucose level and the number of intakes on competition days. It is believed that meals may have had a strong influence on blood glucose, even on competition days with a high frequency of eating and exercise for the decathlon. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

22 pages, 1737 KiB  
Review
Revolutionizing Blood Collection: Innovations, Applications, and the Potential of Microsampling Technologies for Monitoring Metabolites and Lipids
Metabolites 2024, 14(1), 46; https://doi.org/10.3390/metabo14010046 - 11 Jan 2024
Viewed by 323
Abstract
Blood serves as the primary global biological matrix for health surveillance, disease diagnosis, and response to drug treatment, holding significant promise for personalized medicine. The diverse array of lipids and metabolites in the blood provides a snapshot of both physiological and pathological processes, [...] Read more.
Blood serves as the primary global biological matrix for health surveillance, disease diagnosis, and response to drug treatment, holding significant promise for personalized medicine. The diverse array of lipids and metabolites in the blood provides a snapshot of both physiological and pathological processes, with many routinely monitored during conventional wellness checks. The conventional method involves intravenous blood collection, extracting a few milliliters via venipuncture, a technique limited to clinical settings due to its dependence on trained personnel. Microsampling methods have evolved to be less invasive (collecting ≤150 µL of capillary blood), user-friendly (enabling self-collection), and suitable for remote collection in longitudinal studies. Dried blood spot (DBS), a pioneering microsampling technique, dominates clinical and research domains. Recent advancements in device technology address critical limitations of classical DBS, specifically variations in hematocrit and volume. This review presents a comprehensive overview of state-of-the-art microsampling devices, emphasizing their applications and potential for monitoring metabolites and lipids in blood. The scope extends to diverse areas, encompassing population studies, nutritional investigations, drug discovery, sports medicine, and multi-omics research. Full article
(This article belongs to the Special Issue Advances in Metabolic Profiling of Biological Samples 2nd Edition)
Show Figures

Graphical abstract

11 pages, 1773 KiB  
Article
Dysbiotic Vaginal Microbiota Induces Preterm Birth Cascade via Pathogenic Molecules in the Vagina
Metabolites 2024, 14(1), 45; https://doi.org/10.3390/metabo14010045 - 11 Jan 2024
Viewed by 270
Abstract
Dysbiotic vaginal microbiota (DVM) disturb the vaginal environment, including pH, metabolite, protein, and cytokine profiles. This study investigated the impact of DVM on the vaginal environment in 40 Korean pregnant women and identified predictable biomarkers of birth outcomes. Cervicovaginal fluid (CVF) samples were [...] Read more.
Dysbiotic vaginal microbiota (DVM) disturb the vaginal environment, including pH, metabolite, protein, and cytokine profiles. This study investigated the impact of DVM on the vaginal environment in 40 Korean pregnant women and identified predictable biomarkers of birth outcomes. Cervicovaginal fluid (CVF) samples were collected in the third trimester using vaginal swabs, examined for pH, and stored at −80 °C for further analysis. The samples were grouped as full-term (FTB, n = 20) and preterm (PTB, n = 20) births. The microbiota was profiled in the V1–V9 regions. The levels of targeted metabolites, TLR-4, and cytokines were determined. The pH of CVF from PTB (>4.5) was significantly higher than that of the CVF from FTB (>3.5) (p < 0.05). Neonatal gestational age at delivery, birth weight, and Apgar score differed significantly between groups. The relative abundances of beneficial Lactobacillus spp., such as Lactobacillus gasseri, Lactobacillus jensenii, and Bifidobacterium, were higher in FTB, whereas those of pathogenic Enterococcus faecalis, Staphylococcus, Prevotella, Ureaplasma parvum, and Corynebacterium spp. were higher in PTB. Acetate, methanol, TLR-4, and TNF-α levels were negatively correlated with gestational age at delivery and birth weight. Moreover, ethanol, methanol, TLR-4, IL-6, IL-1β, and TNF-α levels were positively correlated with succinate, acetate, acetoacetate, formate, and ammonia. Overall, DVM induces preterm birth via pathogenic molecules in the vagina. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

12 pages, 1694 KiB  
Article
Genetic Circuits for Feedback Control of Gamma-Aminobutyric Acid Biosynthesis in Probiotic Escherichia coli Nissle 1917
Metabolites 2024, 14(1), 44; https://doi.org/10.3390/metabo14010044 - 11 Jan 2024
Viewed by 339
Abstract
Engineered microorganisms such as the probiotic strain Escherichia coli Nissle 1917 (EcN) offer a strategy to sense and modulate the concentration of metabolites or therapeutics in the gastrointestinal tract. Here, we present an approach to regulate the production of the depression-associated metabolite gamma-aminobutyric [...] Read more.
Engineered microorganisms such as the probiotic strain Escherichia coli Nissle 1917 (EcN) offer a strategy to sense and modulate the concentration of metabolites or therapeutics in the gastrointestinal tract. Here, we present an approach to regulate the production of the depression-associated metabolite gamma-aminobutyric acid (GABA) in EcN using genetic circuits that implement negative feedback. We engineered EcN to produce GABA by overexpressing glutamate decarboxylase and applied an intracellular GABA biosensor to identify growth conditions that improve GABA biosynthesis. We next employed characterized genetically encoded NOT gates to construct genetic circuits with layered feedback to control the rate of GABA biosynthesis and the concentration of GABA produced. Looking ahead, this approach may be utilized to design feedback control of microbial metabolite biosynthesis to achieve designable smart microbes that act as living therapeutics. Full article
Show Figures

Figure 1

24 pages, 2351 KiB  
Review
Interaction and Metabolic Pathways: Elucidating the Role of Gut Microbiota in Gestational Diabetes Mellitus Pathogenesis
Metabolites 2024, 14(1), 43; https://doi.org/10.3390/metabo14010043 - 10 Jan 2024
Viewed by 333
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium [...] Read more.
Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus. These changes, detectable in the first trimester, hint as the potential early markers for GDM risk. Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. Moreover, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational health implications. With the advance of multi-omics approaches, a deeper understanding of the nuanced microbiota–host interactions via metabolites in GDM is emerging. The reviewed knowledge offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies in GDM diagnosis, management, and prevention. Full article
Show Figures

Figure 1

Back to TopTop