Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Journal = Automation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4352 KiB  
Article
A Simplified One-Parallel-Element Automatic Impedance-Matching Network Applied to Electromagnetic Acoustic Transducers Driving
Automation 2023, 4(4), 378-395; https://doi.org/10.3390/automation4040022 - 01 Dec 2023
Viewed by 508
Abstract
Ultrasonic waves generated and received by electromagnetic acoustic transducers (EMATs) are advantageous in non-destructive testing, mainly due to the ability to operate without physical contact with the medium under test. Nevertheless, they present a main drawback of less efficiency, which leads to a [...] Read more.
Ultrasonic waves generated and received by electromagnetic acoustic transducers (EMATs) are advantageous in non-destructive testing, mainly due to the ability to operate without physical contact with the medium under test. Nevertheless, they present a main drawback of less efficiency, which leads to a lower signal-to-noise ratio. To overcome this, the L-network impedance-matching network is often used in order to ensure maximum power transfer to the EMAT from the excitation electronics. There is a wide range of factors that affect an EMAT’s impedance, apart from the transducer itself; namely, the properties of the specimen material, temperature, and frequency. Therefore, to ensure optimal power transfer, the matching network’s configuration needs to be fine-tuned often. Therefore, the automation of the laborious process of manually adjusting the network is of great benefit to the use of EMAT transducers. In this work, a simplified one-parallel-element automatic matching network is proposed and its theoretical optimal value is derived. Next, an automatic matching network was designed and fabricated. Experiments were performed with two different EMATs at several frequencies obtaining good agreement with theoretical predictions. The automatic system was able to determine the best configuration for the one-element matching network and provided up to 5.6 dB gain, similar to a standard manual solution and considerably faster. Full article
Show Figures

Figure 1

19 pages, 2098 KiB  
Article
Optimisation of Product Recovery Options in End-of-Life Product Disassembly by Robots
Automation 2023, 4(4), 359-377; https://doi.org/10.3390/automation4040021 - 29 Nov 2023
Viewed by 448
Abstract
In a circular economy, strategies for product recovery, such as reuse, recycling, and remanufacturing, play an important role at the end of a product’s life. A sustainability model was developed to solve the problem of sequence-dependent robotic disassembly line balancing. This research aimed [...] Read more.
In a circular economy, strategies for product recovery, such as reuse, recycling, and remanufacturing, play an important role at the end of a product’s life. A sustainability model was developed to solve the problem of sequence-dependent robotic disassembly line balancing. This research aimed to assess the viability of the model, which was optimised using the Multi-Objective Bees Algorithm in a robotic disassembly setting. Two industrial gear pumps were used as case studies. Four objectives (maximising profit, energy savings, emissions reductions and minimising line imbalance) were set. Several product recovery scenarios were developed to find the best recovery plans for each component. An efficient metaheuristic, the Bees Algorithm, was used to find the best solution. The robotic disassembly plans were generated and assigned to robotic workstations simultaneously. Using the proposed sustainability model on end-of-life industrial gear pumps shows the applicability of the model to real-world problems. The Multi-Objective Bees Algorithm was able to find the best scenario for product recovery by assigning each component to recycling, reuse, remanufacturing, or disposal. The performance of the algorithm is consistent, producing a similar performance for all sustainable strategies. This study addresses issues that arise with product recovery options for end-of-life products and provides optimal solutions through case studies. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

14 pages, 2636 KiB  
Communication
Implementation of Digital Twin and Real Production System to Address Actual and Future Challenges in Assembly Technology
Automation 2023, 4(4), 345-358; https://doi.org/10.3390/automation4040020 - 29 Nov 2023
Viewed by 441
Abstract
Increasing volatility in manufacturing and rising sustainability requirements demand more efficient processes in production, especially in employee qualification and engineering during development and on-site adjustments before and after the start of production. One possible solution is using digital twins for virtual commissioning, which [...] Read more.
Increasing volatility in manufacturing and rising sustainability requirements demand more efficient processes in production, especially in employee qualification and engineering during development and on-site adjustments before and after the start of production. One possible solution is using digital twins for virtual commissioning, which can speed up engineering processes, qualify employees, and save valuable resources. To solve these challenges, it is necessary to identify promising approaches for using the digital twin and virtual commissioning. Furthermore, creating an environment where these approaches can be optimally explored is essential. This paper presents promising research approaches and demonstrates the development of an assembly process and a production system with a digital twin designed to explore these aspects. The presented system is an interlinked production system for assembling an actual industrial product. It includes different levels of human–robot interaction and automation, which can be implemented virtually in the digital twin. Full article
Show Figures

Figure 1

18 pages, 3209 KiB  
Article
Application of Task-Aligned Model Based on Defect Detection
Automation 2023, 4(4), 327-344; https://doi.org/10.3390/automation4040019 - 27 Oct 2023
Viewed by 787
Abstract
In recent years, with the rise of the automation wave, reducing manual judgment, especially in defect detection in factories, has become crucial. The automation of image recognition has emerged as a significant challenge. However, the problem of how to effectively improve the classification [...] Read more.
In recent years, with the rise of the automation wave, reducing manual judgment, especially in defect detection in factories, has become crucial. The automation of image recognition has emerged as a significant challenge. However, the problem of how to effectively improve the classification of defect detection and the accuracy of the mean average precision (mAP) is a continuous process of improvement and has evolved from the original visual inspection of defects to the present deep learning detection system. This paper presents an application of deep learning, and the task-aligned approach is firstly used on metal defects, and the anchor and bounding box of objects and categories are continuously optimized by mutual correction. We used the task-aligned one-stage object detection (TOOD) model, then improved and optimized it, followed by deformable ConvNets v2 (DCNv2) to adjust the deformable convolution, and finally used soft efficient non-maximum suppression (Soft-NMS) to optimize intersection over union (IoU) and adjust the IoU threshold and many other experiments. In the Northeastern University surface defect detection dataset (NEU-DET) for surface defect detection, mAP increased from 75.4% to 77.9%, a 2.5% increase in mAP, and mAP was also improved compared to existing advanced models, which has potential for future use. Full article
(This article belongs to the Topic Smart Manufacturing and Industry 5.0)
Show Figures

Figure 1

18 pages, 5495 KiB  
Article
Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera
Automation 2023, 4(4), 309-326; https://doi.org/10.3390/automation4040018 - 24 Sep 2023
Viewed by 1038
Abstract
In order to improve agriculture productivity, autonomous navigation algorithms are being developed so that robots can navigate along agricultural environments to automatize tasks that are currently performed by hand. This work uses machine vision techniques such as the Otsu’s method, blob detection, and [...] Read more.
In order to improve agriculture productivity, autonomous navigation algorithms are being developed so that robots can navigate along agricultural environments to automatize tasks that are currently performed by hand. This work uses machine vision techniques such as the Otsu’s method, blob detection, and pixel counting to detect the center of the row. Additionally, a commutable control is implemented to autonomously navigate a vineyard. Experimental trials were conducted in an actual vineyard to validate the algorithm. In these trials show that the algorithm can successfully guide the robot through the row without any collisions. This algorithm offers a computationally efficient solution for vineyard row navigation, employing a 2D camera and the Otsu’s thresholding technique to ensure collision-free operation. Full article
Show Figures

Figure 1

18 pages, 6004 KiB  
Article
Multi-Criteria Design of Electric Transit Bus Based on Wireless Charging Infrastructure: A Case Study of Real Road Map in Wakefield
Automation 2023, 4(3), 291-308; https://doi.org/10.3390/automation4030017 - 15 Sep 2023
Viewed by 748
Abstract
In this paper, a new design strategy is developed for the Wireless Charging Electric Transit Bus (WCETB). The technology is innovative in that the battery in the bus is charged while it is moving over the charging infrastructure. In particular, an improved version [...] Read more.
In this paper, a new design strategy is developed for the Wireless Charging Electric Transit Bus (WCETB). The technology is innovative in that the battery in the bus is charged while it is moving over the charging infrastructure. In particular, an improved version of the Whale Optimization Algorithm (IWOA) is adopted for the WCETB system in the road map of Wakefield City, located in the United Kingdom. The main challenge in the WCETB is to select the power transmitter and battery size efficiently from an economical point of view. For this purpose, both factors are considered in the objective function to achieve the benefits of WCETBs from an energy perspective. Two analytical economic design optimization models are developed in this work. The first model is the real- environment model, which considers a WCETB system operating under typical traffic conditions characterized by vehicle interactions and inherent uncertainties. In this scenario, vehicle speeds vary with time, and specific traffic routes may encounter congestion. The second model concentrates on a WCETB system operating in a traffic-free environment with minimal vehicle interactions and uncertainties. The IWOA is implemented for the WCETB to operate in the real environment. Under traffic-free environment conditions, we utilize mathematical procedures and General Algebraic Modeling System (GAMS) software to solve the optimization problem. This approach not only allows us to comprehensively analyze the WCETB system’s behavior but also examine the interactions among different components of the objective function and constraints. Finally, a comprehensive numerical analysis under various conditions, including changes in the number of buses and increases in the length of routes, is conducted. Full article
Show Figures

Figure 1

28 pages, 10914 KiB  
Article
Task Location to Improve Human–Robot Cooperation: A Condition Number-Based Approach
Automation 2023, 4(3), 263-290; https://doi.org/10.3390/automation4030016 - 06 Sep 2023
Viewed by 1092
Abstract
This paper proposes and implements an approach to evaluate human–robot cooperation aimed at achieving high performance. Both the human arm and the manipulator are modeled as a closed kinematic chain. The proposed task performance criterion is based on the condition number of this [...] Read more.
This paper proposes and implements an approach to evaluate human–robot cooperation aimed at achieving high performance. Both the human arm and the manipulator are modeled as a closed kinematic chain. The proposed task performance criterion is based on the condition number of this closed kinematic chain. The robot end-effector is guided by the human operator via an admittance controller to complete a straight-line segment motion, which is the desired task. The best location of the selected task is determined by maximizing the minimum of the condition number along the path. The performance of the proposed approach is evaluated using a criterion related to ergonomics. The experiments are executed with several subjects using a KUKA LWR robot to repeat the specified motion to evaluate the introduced approach. A comparison is presented between the current proposed approach and our previously implemented approach where the task performance criterion was based on the manipulability index of the closed kinematic chain. The results reveal that the condition number-based approach improves the human–robot cooperation in terms of the achieved accuracy, stability, and human comfort, but at the expense of task speed and completion time. On the other hand, the manipulability-index-based approach improves the human–robot cooperation in terms of task speed and human comfort, but at the cost of the achieved accuracy. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

17 pages, 5643 KiB  
Article
The Design of a Reaction Flywheel Speed Control System Based on ADRC
Automation 2023, 4(3), 246-262; https://doi.org/10.3390/automation4030015 - 30 Aug 2023
Viewed by 747
Abstract
The reaction flywheel is a crucial operational component within a satellite’s attitude control system. Enhancing the performance of the reaction flywheel speed control system holds significant importance for satellite attitude control. In this paper, an active disturbance rejection control (ADRC) approach is introduced [...] Read more.
The reaction flywheel is a crucial operational component within a satellite’s attitude control system. Enhancing the performance of the reaction flywheel speed control system holds significant importance for satellite attitude control. In this paper, an active disturbance rejection control (ADRC) approach is introduced to mitigate the impact of uncertain disturbances on reaction flywheel speed control precision. The reaction flywheel speed control system is designed as an ADRC controller due to the current challenge of measuring unknown disturbances accurately in the reaction flywheel system. To derive the rotor’s speed observation value and the estimated total disturbances value, the sampled data of the reaction flywheel rotor position and torque control signal are fed into the extended state observer. The estimated total disturbances value is compensated on feedforward control, which could mitigate significantly the effects of various nonlinear disturbances. The paper initially establishes the rationale behind the reaction flywheel ADRC controller through theoretical analysis, followed by analysis of the differences of performance of reaction flywheel control by the ADRC controller and the PID controller in MATLAB/SIMULINK. Simulation results demonstrate the evident advantages of the ADRC controller over the PID controller in terms of speed command tracking capability and disturbances suppression ability. Subsequently, the ADRC controller program and the PID controller program are implemented on the reaction flywheel control circuit, and experiments are conducted to contrast speed command tracking and disturbance suppression. Importantly, the experimental outcomes align with the simulation results. Full article
Show Figures

Figure 1

14 pages, 862 KiB  
Article
Can Artificial Neural Networks Be Used to Predict Bitcoin Data?
Automation 2023, 4(3), 232-245; https://doi.org/10.3390/automation4030014 - 25 Aug 2023
Viewed by 725
Abstract
Financial markets are complex, evolving dynamic systems. Due to their irregularity, financial time series forecasting is regarded as a rather challenging task. In recent years, artificial neural network applications in finance for such tasks as pattern recognition, classification, and time series forecasting have [...] Read more.
Financial markets are complex, evolving dynamic systems. Due to their irregularity, financial time series forecasting is regarded as a rather challenging task. In recent years, artificial neural network applications in finance for such tasks as pattern recognition, classification, and time series forecasting have dramatically increased. The objective of this paper is to present this versatile framework and attempt to use it to predict the stock return series of four public-listed companies on the New York Stock Exchange. Our findings coincide with those of Burton Malkiel in his book, A Random Walk Down Wall Street; no conclusive evidence is found that our proposed models can predict the stock return series better than that of a random walk. Full article
Show Figures

Figure 1

22 pages, 27075 KiB  
Article
Deep Dyna-Q for Rapid Learning and Improved Formation Achievement in Cooperative Transportation
Automation 2023, 4(3), 210-231; https://doi.org/10.3390/automation4030013 - 10 Jul 2023
Cited by 2 | Viewed by 1147
Abstract
Nowadays, academic research, disaster mitigation, industry, and transportation apply the cooperative multi-agent concept. A cooperative multi-agent system is a multi-agent system that works together to solve problems or maximise utility. The essential marks of formation control are how the multiple agents can reach [...] Read more.
Nowadays, academic research, disaster mitigation, industry, and transportation apply the cooperative multi-agent concept. A cooperative multi-agent system is a multi-agent system that works together to solve problems or maximise utility. The essential marks of formation control are how the multiple agents can reach the desired point while maintaining their position in the formation based on the dynamic conditions and environment. A cooperative multi-agent system closely relates to the formation change issue. It is necessary to change the arrangement of multiple agents according to the environmental conditions, such as when avoiding obstacles, applying different sizes and shapes of tracks, and moving different sizes and shapes of transport objects. Reinforcement learning is a good method to apply in a formation change environment. On the other hand, the complex formation control process requires a long learning time. This paper proposed using the Deep Dyna-Q algorithm to speed up the learning process while improving the formation achievement rate by tuning the parameters of the Deep Dyna-Q algorithm. Even though the Deep Dyna-Q algorithm has been used in many applications, it has not been applied in an actual experiment. The contribution of this paper is the application of the Deep Dyna-Q algorithm in formation control in both simulations and actual experiments. This study successfully implements the proposed method and investigates formation control in simulations and actual experiments. In the actual experiments, the Nexus robot with a robot operating system (ROS) was used. To confirm the communication between the PC and robots, camera processing, and motor controller, the velocities from the simulation were directly given to the robots. The simulations could give the same goal points as the actual experiments, so the simulation results approach the actual experimental results. The discount rate and learning rate values affected the formation change achievement rate, collision number among agents, and collisions between agents and transport objects. For learning rate comparison, DDQ (0.01) consistently outperformed DQN. DQN obtained the maximum −170 reward in about 130,000 episodes, while DDQ (0.01) could achieve this value in 58,000 episodes and achieved a maximum −160 reward. The application of an MEC (model error compensator) in the actual experiment successfully reduced the error movement of the robots so that the robots could produce the formation change appropriately. Full article
Show Figures

Figure 1

19 pages, 1729 KiB  
Article
Automation Radiomics in Predicting Radiation Pneumonitis (RP)
Automation 2023, 4(3), 191-209; https://doi.org/10.3390/automation4030012 - 06 Jul 2023
Viewed by 1271
Abstract
Radiomics has shown great promise in predicting various diseases. Researchers have previously attempted to include radiomics in their automated detection, diagnosis, and segmentation algorithms, taking these steps based on the promising outcomes of radiomics-based studies. As a result of the increased attention given [...] Read more.
Radiomics has shown great promise in predicting various diseases. Researchers have previously attempted to include radiomics in their automated detection, diagnosis, and segmentation algorithms, taking these steps based on the promising outcomes of radiomics-based studies. As a result of the increased attention given to this topic, numerous institutions have developed their own radiomics software. These packages, on the other hand, have been utilized interchangeably without regard for their fundamental differences. The primary purpose of this study was to explore benefits of predictive model performance for radiation pneumonitis (RP), which is the most frequent side effect of chest radiotherapy, and through this work, we developed a radiomics model based on deep learning that intends to increase RP prediction performance by combining more data points and digging deeper into these data. In order to evaluate the most popular machine learning models, radiographic characteristics were used, and we recorded the most important of them. The high dimensionality of radiomic datasets is a major issue. The method proposed for use in data problems is the synthetic minority oversampling technique, which we used in order to create a balanced dataset by leveraging suitable hardware and open-source software. The present study assessed the efficacy of various machine learning models, including logistic regression (LR), support vector machine (SVM), random forest (RF), and deep neural network (DNN), in predicting radiation pneumonitis by utilizing specific radiomics features. The findings of the study indicate that the four models displayed satisfactory efficacy in forecasting radiation pneumonitis. The DNN model demonstrated the highest area under the receiver operating curve (AUC-ROC) value, which was 0.87, suggesting its superior predictive capacity among the models considered. The AUC-ROC values for the random forest, SVM, and logistic regression models were 0.85, 0.83, and 0.81, respectively. Full article
Show Figures

Figure 1

27 pages, 21777 KiB  
Article
Trajectory Control in Discrete-Time Nonlinear Coupling Dynamics of a Soft Exo-Digit and a Human Finger Using Input–Output Feedback Linearization
Automation 2023, 4(2), 164-190; https://doi.org/10.3390/automation4020011 - 31 May 2023
Cited by 1 | Viewed by 1338
Abstract
This paper presents a quasi-static model-based control algorithm for controlling the motion of a soft robotic exo-digit with three independent actuation joints physically interacting with the human finger. A quasi-static analytical model of physical interaction between the soft exo-digit and a human finger [...] Read more.
This paper presents a quasi-static model-based control algorithm for controlling the motion of a soft robotic exo-digit with three independent actuation joints physically interacting with the human finger. A quasi-static analytical model of physical interaction between the soft exo-digit and a human finger model was developed. Then, the model was presented as a nonlinear discrete-time multiple-input multiple-output (MIMO) state-space representation for the control system design. Input–output feedback linearization was utilized and a control input was designed to linearize the input–output, where the input is the actuation pressure of an individual soft actuator, and the output is the pose of the human fingertip. The asymptotic stability of the nonlinear discrete-time system for trajectory tracking control is discussed. A soft robotic exoskeleton digit (exo-digit) and a 3D-printed human-finger model integrated with IMU sensors were used for the experimental test setup. An Arduino-based electro-pneumatic control hardware was developed to control the actuation pressure of the soft exo-digit. The effectiveness of the controller was examined through simulation studies and experimental testing for following different pose trajectories corresponding to the human finger pose during the activities of daily living. The model-based controller was able to follow the desired trajectories with a very low average root-mean-square error of 2.27 mm in the x-direction, 2.75 mm in the y-direction, and 3.90 degrees in the orientation of the human finger distal link about the z-axis. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

13 pages, 1111 KiB  
Article
Hand-Eye Calibration via Linear and Nonlinear Regressions
Automation 2023, 4(2), 151-163; https://doi.org/10.3390/automation4020010 - 08 May 2023
Viewed by 1699
Abstract
For a robot to pick up an object viewed by a camera, the object’s position in the image coordinate system must be converted to the robot coordinate system. Recently, a neural network-based method was proposed to achieve this task. This methodology can accurately [...] Read more.
For a robot to pick up an object viewed by a camera, the object’s position in the image coordinate system must be converted to the robot coordinate system. Recently, a neural network-based method was proposed to achieve this task. This methodology can accurately convert the object’s position despite errors and disturbances that arise in a real-world environment, such as the deflection of a robot arm triggered by changes in the robot’s posture. However, this method has some drawbacks, such as the need for significant effort in model selection, hyperparameter tuning, and lack of stability and interpretability in the learning results. To address these issues, a method involving linear and nonlinear regressions is proposed. First, linear regression is employed to convert the object’s position from the image coordinate system to the robot base coordinate system. Next, B-splines-based nonlinear regression is applied to address the errors and disturbances that occur in a real-world environment. Since this approach is more stable and has better calibration performance with interpretability as opposed to the recent method, it is more practical. In the experiment, calibration results were incorporated into a robot, and its performance was evaluated quantitatively. The proposed method achieved a mean position error of 0.5 mm, while the neural network-based method achieved an error of 1.1 mm. Full article
Show Figures

Figure 1

28 pages, 8846 KiB  
Article
Optimization of 3D Tolerance Design Based on Cost–Quality–Sensitivity Analysis to the Deviation Domain
Automation 2023, 4(2), 123-150; https://doi.org/10.3390/automation4020009 - 21 Apr 2023
Viewed by 1497
Abstract
Under the new geometric product specification (GPS), a two-dimensional chain cannot completely guarantee quality of the product. To optimize the allocation of three-dimensional tolerances in the conceptual design stage, the geometric variations of the tolerance zone to the deviation domain will be mapped [...] Read more.
Under the new geometric product specification (GPS), a two-dimensional chain cannot completely guarantee quality of the product. To optimize the allocation of three-dimensional tolerances in the conceptual design stage, the geometric variations of the tolerance zone to the deviation domain will be mapped in this paper. The deviation-processing cost, deviation-quality loss cost, and deviation-sensitivity cost function relationships combined with the tolerance zone described by the small displacement torsor theory are discussed. Then, synchronous constraint of the function structure and tolerance is realized. Finally, an improved bat algorithm is used to solve the established three-dimensional tolerance mathematical model. A case study in the optimization of three-part tolerance design is used to illustrate the proposed model and algorithms. The performance and advantage of the proposed method are discussed in the end. Full article
(This article belongs to the Topic Smart Manufacturing and Industry 5.0)
Show Figures

Figure 1

13 pages, 1456 KiB  
Article
Semantic Communities from Graph-Inspired Visual Representations of Cityscapes
Automation 2023, 4(1), 110-122; https://doi.org/10.3390/automation4010008 - 05 Mar 2023
Viewed by 1532
Abstract
The swift development of autonomous vehicles raises the necessity of semantically mapping the environment by producing distinguishable representations to recognise similar areas. To this end, in this article, we present an efficient technique to cut up a robot’s trajectory into semantically consistent communities [...] Read more.
The swift development of autonomous vehicles raises the necessity of semantically mapping the environment by producing distinguishable representations to recognise similar areas. To this end, in this article, we present an efficient technique to cut up a robot’s trajectory into semantically consistent communities based on graph-inspired descriptors. This allows an agent to localise itself in future tasks under different environmental circumstances in an urban area. The proposed semantic grouping technique utilizes the Leiden Community Detection Algorithm (LeCDA), which is a novel and efficient method of low computational complexity and exploits semantic and topometric information from the observed scenes. The presented experimentation was carried out on a novel dataset from the city of Xanthi, Greece (dubbed as Gryphonurban urban dataset), which was recorded by RGB-D, IMU and GNSS sensors mounted on a moving vehicle. Our results exhibit the formulation of a semantic map with visually coherent communities and the realisation of an effective localisation mechanism for autonomous vehicles in urban environments. Full article
Show Figures

Graphical abstract

Back to TopTop