Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,420)

Search Parameters:
Journal = MCA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 640 KiB  
Article
A Numerical Method Based on Operator Splitting Collocation Scheme for Nonlinear Schrödinger Equation
Math. Comput. Appl. 2024, 29(1), 6; https://doi.org/10.3390/mca29010006 - 15 Jan 2024
Abstract
In this paper, a second-order operator splitting method combined with the barycentric Lagrange interpolation collocation method is proposed for the nonlinear Schrödinger equation. The equation is split into linear and nonlinear parts: the linear part is solved by the barycentric Lagrange interpolation collocation [...] Read more.
In this paper, a second-order operator splitting method combined with the barycentric Lagrange interpolation collocation method is proposed for the nonlinear Schrödinger equation. The equation is split into linear and nonlinear parts: the linear part is solved by the barycentric Lagrange interpolation collocation method in space combined with the Crank–Nicolson scheme in time; the nonlinear part is solved analytically due to the availability of a closed-form solution, which avoids solving the nonlinear algebraic equation. Moreover, the consistency of the fully discretized scheme for the linear subproblem and error estimates of the operator splitting scheme are provided. The proposed numerical scheme is of spectral accuracy in space and of second-order accuracy in time, which greatly improves the computational efficiency. Numerical experiments are presented to confirm the accuracy, mass and energy conservation of the proposed method. Full article
20 pages, 3052 KiB  
Article
Accuracy Examination of the Fourier Series Approximation for Almost Limiting Gravity Waves on Deep Water
Math. Comput. Appl. 2024, 29(1), 5; https://doi.org/10.3390/mca29010005 - 11 Jan 2024
Viewed by 266
Abstract
A permanent gravity wave propagating on deep water is a classic mathematical problem. However, the Fourier series approximation (FSA) based on the physical plane was examined to be valid for almost waves at all depths. The accuracy of the FSA for almost-limiting gravity [...] Read more.
A permanent gravity wave propagating on deep water is a classic mathematical problem. However, the Fourier series approximation (FSA) based on the physical plane was examined to be valid for almost waves at all depths. The accuracy of the FSA for almost-limiting gravity waves remains unevaluated, which is the purpose of this study. We calculate some physical properties of almost-limiting waves on deep water using the FSA and compare them with other studies on the complex plane. The comparison results show that the closer the wave is, the greater the difference. We find that the main reason for this difference is that the wave profile in the FSA retains an original implicit form and is not represented by Fourier series. Therefore, the kinematic and dynamic conditions of the free surface around the wave crest cannot be satisfied at the same time. Full article
Show Figures

Figure 1

13 pages, 579 KiB  
Article
Accelerating Convergence for the Parameters of PV Cell Models
Math. Comput. Appl. 2024, 29(1), 4; https://doi.org/10.3390/mca29010004 - 10 Jan 2024
Viewed by 270
Abstract
Small-scale photovoltaic (PV) systems are essential for the local energy supply. The most commonly known PV cell is configured as a large-area p–n junction made from silicon, but PV systems today include PV cells of various manufactures and origins. The dependence relationship between [...] Read more.
Small-scale photovoltaic (PV) systems are essential for the local energy supply. The most commonly known PV cell is configured as a large-area p–n junction made from silicon, but PV systems today include PV cells of various manufactures and origins. The dependence relationship between current and voltage is nonlinear, known as the current–voltage characteristic. The values of the characteristic equation’s parameters define the working regime of the PV cell. In the present work, the parameter values are iteratively obtained by nonlinear regression for an explicit model. The acceleration of the convergence of these values is studied for an approximation simplifying the iterative calculation in the case of perpendicular offsets. The new estimations of parameters allow for a much faster estimate of the maximum power point of the PV system. Full article
Show Figures

Figure 1

33 pages, 2936 KiB  
Article
Role Reversals in a Tri-Trophic Prey–Predator Interaction System: A Model-Based Study Using Deterministic and Stochastic Approaches
Math. Comput. Appl. 2024, 29(1), 3; https://doi.org/10.3390/mca29010003 - 10 Jan 2024
Viewed by 297
Abstract
It is frequently observed that adult members of prey species sometimes use their predation mechanism on juvenile members of predator species. Ecological literature describes this phenomenon as prey–predator role reversal dynamics.Numerous authors have observed and described the biological development behind this feeding behaviour. [...] Read more.
It is frequently observed that adult members of prey species sometimes use their predation mechanism on juvenile members of predator species. Ecological literature describes this phenomenon as prey–predator role reversal dynamics.Numerous authors have observed and described the biological development behind this feeding behaviour. However, the dynamics of this role reversal have hardly been illustrated in the literature in a precise way. In this regard, we formulated an ecological model using the standard prey–predator interactions, allowing for a reverse feeding mechanism. The mathematical model consisted of a three-species food-web structure comprising the common prey, intermediate predator, and top predator. Note that a role-reversal mechanism was observed between the intermediate and top predators based on the scarcity of the prey population. However, we observed the most critical parameters had a significant effect on this reverse feeding behaviour. The bifurcation analysis is the primary criterion for this identification. The proposed deterministic model is then extended to its stochastic analogue by allowing for environmental influences on the tri-trophic food web structure. The conditional moment approach is applied to obtain the equilibrium distribution of populations and their conditional moments in the system. The stochastic setup analysis also supports the stability of this food chain structure, with some restricted conditions. Finally, to facilitate the interpretation of our mathematical results, we investigated it using numerical simulations. Full article
(This article belongs to the Special Issue Numerical Solutions to Stochastic Model and Their Applications)
Show Figures

Figure 1

21 pages, 851 KiB  
Article
A Finite Difference Method for Solving the Wave Equation with Fractional Damping
Math. Comput. Appl. 2024, 29(1), 2; https://doi.org/10.3390/mca29010002 - 29 Dec 2023
Viewed by 419
Abstract
In this paper, we develop a finite difference method for solving the wave equation with fractional damping in 1D and 2D cases, where the fractional damping is given based on the Caputo fractional derivative. Firstly, based on the weighted method, we propose a [...] Read more.
In this paper, we develop a finite difference method for solving the wave equation with fractional damping in 1D and 2D cases, where the fractional damping is given based on the Caputo fractional derivative. Firstly, based on the weighted method, we propose a new numerical approximation for the Caputo fractional derivative and apply it for the 1D case to obtain a time-stepping method. We then develop an alternating direction implicit (ADI) scheme for the 2D case. Using the discrete energy method, we prove that the proposed difference schemes are unconditionally stable and convergent in both 1D and 2D cases. Finally, several numerical examples are given to verify the theoretical results. Full article
Show Figures

Figure 1

22 pages, 3253 KiB  
Article
Simulation of a Thermal Recuperative Incinerator of VOCs with a Special Focus on the Heat Exchanger
Math. Comput. Appl. 2024, 29(1), 1; https://doi.org/10.3390/mca29010001 - 23 Dec 2023
Viewed by 400
Abstract
Simulation and modeling of thermal recuperative incinerators may play an important role in enhancing efficiency and ensuring compliance with environmental regulations. In this context, the primary objective of this study is to simulate and comprehensively understand the operation of a geometrically complex thermal [...] Read more.
Simulation and modeling of thermal recuperative incinerators may play an important role in enhancing efficiency and ensuring compliance with environmental regulations. In this context, the primary objective of this study is to simulate and comprehensively understand the operation of a geometrically complex thermal recuperative incinerator with an integrated preheater featuring varying levels of heat recovery. To achieve this objective, a simple yet effective 0D model was developed. This modeling approach allows for a holistic evaluation of the performance of the incinerator, enabling the assessment of key parameters, such as temperatures and heat transfer rates, under varying operating conditions. Successful validation of the model is established by comparing its results with measurements from an industrial thermal recuperative incinerator in operation at a vehicle assembly plant, with maximum relative differences of around 9%. Simulations for different percentages of flue gases bypassing the preheater were conducted, indicating a good compromise between heat transfer and pressure drop and a 22% heat recovery at around 50%. The model presented in this paper provides a robust foundation for comprehensively assessing and optimizing the performance of thermal recuperative incinerators and systems that comprise thermal recuperative incinerators, with implications for waste management and sustainable energy recovery systems. Full article
Show Figures

Figure 1

17 pages, 846 KiB  
Article
Fokker–Planck Analysis of Superresolution Microscopy Images
Math. Comput. Appl. 2023, 28(6), 113; https://doi.org/10.3390/mca28060113 - 14 Dec 2023
Viewed by 593
Abstract
A method for the analysis of super-resolution microscopy images is presented. This method is based on the analysis of stochastic trajectories of particles moving on the membrane of a cell with the assumption that this motion is determined by the properties of this [...] Read more.
A method for the analysis of super-resolution microscopy images is presented. This method is based on the analysis of stochastic trajectories of particles moving on the membrane of a cell with the assumption that this motion is determined by the properties of this membrane. Thus, the purpose of this method is to recover the structural properties of the membrane by solving an inverse problem governed by the Fokker–Planck equation related to the stochastic trajectories. Results of numerical experiments demonstrate the ability of the proposed method to reconstruct the potential of a cell membrane by using synthetic data similar those captured by super-resolution microscopy of luminescent activated proteins. Full article
Show Figures

Figure 1

21 pages, 4591 KiB  
Article
Continuum and Molecular Modeling of Chemical Vapor Deposition at Nano-Scale Fibrous Substrates
Math. Comput. Appl. 2023, 28(6), 112; https://doi.org/10.3390/mca28060112 - 06 Dec 2023
Viewed by 672
Abstract
Chemical vapor deposition (CVD) is a common industrial process that incorporates a complex combination of fluid flow, chemical reactions, and surface deposition. Understanding CVD processes requires rigorous and costly experimentation involving multiple spatial scales, from meters to nanometers. The numerical modeling of deposition [...] Read more.
Chemical vapor deposition (CVD) is a common industrial process that incorporates a complex combination of fluid flow, chemical reactions, and surface deposition. Understanding CVD processes requires rigorous and costly experimentation involving multiple spatial scales, from meters to nanometers. The numerical modeling of deposition over macro-scale substrates has been conducted in the literature and results show compliance with experimental data. For smaller-scale substrates, where the corresponding Knudsen number is larger than zero, continuum modeling does not provide accurate results, which calls for the implementation of molecular-level modeling techniques. In the current study, the finite-volume method (FVM) and Direct Simulation Monte Carlo (DSMC) method were combined to model the reactor-scale flow with CVD around micro- and nano-scale fibers. CVD at fibers with round cross-sections was modeled in the reactor, where fibers were oriented perpendicularly with respect to the feedstock gas flow. The DSMC method was applied to modeling flow around the matrix of nano-scale circular individual fibers. Results show that for smaller diameters of individual fibers with the same filling ratio, the residence time of gas particles inside the fibrous media reduces, and, consequently, the amount of material surface deposition decreases. The sticking coefficient on the fibers’ surface plays an important role; for instance, increasing the sticking coefficient from 20% to 80% will double the deposition rate. Full article
Show Figures

Figure 1

19 pages, 379 KiB  
Article
Bayes Inference of Structural Safety under Extreme Wind Loads Based upon a Peak-Over-Threshold Process of Exceedances
Math. Comput. Appl. 2023, 28(6), 111; https://doi.org/10.3390/mca28060111 - 30 Nov 2023
Viewed by 649
Abstract
In the present paper, the process of estimating the important statistical properties of extreme wind loads on structures is investigated by considering the effect of large variability. In fact, for the safety design and operating conditions of structures such as the ones characterizing [...] Read more.
In the present paper, the process of estimating the important statistical properties of extreme wind loads on structures is investigated by considering the effect of large variability. In fact, for the safety design and operating conditions of structures such as the ones characterizing tall buildings, wind towers, and offshore structures, it is of interest to obtain the best possible estimates of extreme wind loads on structures, the recurrence frequency, the return periods, and other stochastic properties, given the available statistical data. In this paper, a Bayes estimation of extreme load values is investigated in the framework of structural safety analysis. The evaluation of extreme values of the wind loads on the structures is performed via a combined employment of a Poisson process model for the peak-over-threshold characterization and an adequate characterization of the parent distribution which generates the base wind load values. In particular, the present investigation is based upon a key parameter for assessing the safety of structures, i.e., a proper safety index referred to a given extreme value of wind speed. The attention is focused upon the estimation process, for which the presented procedure proposes an adequate Bayesian approach based upon prior assumptions regarding (1) the Weibull probability that wind speed is higher than a prefixed threshold value, and (2) the frequency of the Poisson process of gusts. In the last part of the investigation, a large set of numerical simulations is analyzed to evaluate the feasibility and efficiency of the above estimation method and with the objective to analyze and compare the presented approach with the classical Maximum Likelihood method. Moreover, the robustness of the proposed Bayes estimation is also investigated with successful results, both with respect to the assumed parameter prior distributions and with respect to the Weibull distribution of the wind speed values. Full article
8 pages, 763 KiB  
Article
Explicit Integrating Factor Runge–Kutta Method for the Extended Fisher–Kolmogorov Equation
Math. Comput. Appl. 2023, 28(6), 110; https://doi.org/10.3390/mca28060110 - 22 Nov 2023
Viewed by 739
Abstract
The extended Fisher–Kolmogorov (EFK) equation is an important model for phase transitions and bistable phenomena. This paper presents some fast explicit numerical schemes based on the integrating factor Runge–Kutta method and the Fourier spectral method to solve the EFK equation. The discrete global [...] Read more.
The extended Fisher–Kolmogorov (EFK) equation is an important model for phase transitions and bistable phenomena. This paper presents some fast explicit numerical schemes based on the integrating factor Runge–Kutta method and the Fourier spectral method to solve the EFK equation. The discrete global convergence of these new schemes is analyzed rigorously. Three numerical examples are presented to verify the theoretical analysis and the efficiency of the proposed schemes. Full article
Show Figures

Figure 1

16 pages, 754 KiB  
Article
Asymptotic Consideration of Rayleigh Waves on a Coated Orthorhombic Elastic Half-Space Reinforced Using an Elastic Winkler Foundation
Math. Comput. Appl. 2023, 28(6), 109; https://doi.org/10.3390/mca28060109 - 15 Nov 2023
Viewed by 731
Abstract
This article derives approximate formulations for Rayleigh waves on a coated orthorhombic elastic half-space with a prescribed vertical load acting as an elastic Winkler foundation. In addition, perfect continuity conditions are imposed between the coating layer and the substrate, while suitable decaying conditions [...] Read more.
This article derives approximate formulations for Rayleigh waves on a coated orthorhombic elastic half-space with a prescribed vertical load acting as an elastic Winkler foundation. In addition, perfect continuity conditions are imposed between the coating layer and the substrate, while suitable decaying conditions are slated along the infinite depth of the half-space. The effect of the thin layer is modeled using appropriate effective boundary conditions within the long-wave limit. By applying the Radon transform and using the perturbation method, the derived model successfully captures the physical characteristics of elastic surface waves in coated half-spaces. The model consists of a pesudo-static elliptic equation decaying over the interior of the half-space and a singularly perturbed hyperbolic equation with a pseudo-differential operator. The pseudo-differential equation gives the approximate dispersion of surface waves on the coated half-space structure and is analyzed numerically at the end. Full article
Show Figures

Figure 1

20 pages, 352 KiB  
Article
Fractional Hermite–Hadamard-Type Inequalities for Differentiable Preinvex Mappings and Applications to Modified Bessel and q-Digamma Functions
Math. Comput. Appl. 2023, 28(6), 108; https://doi.org/10.3390/mca28060108 - 09 Nov 2023
Viewed by 783
Abstract
The theory of convexity pertaining to fractional calculus is a well-established concept that has attracted significant attention in mathematics and various scientific disciplines for over a century. In the realm of applied mathematics, convexity, particularly in relation to fractional analysis, finds extensive and [...] Read more.
The theory of convexity pertaining to fractional calculus is a well-established concept that has attracted significant attention in mathematics and various scientific disciplines for over a century. In the realm of applied mathematics, convexity, particularly in relation to fractional analysis, finds extensive and remarkable applications. In this manuscript, we establish new fractional identities. Employing these identities, some extensions of the fractional H-H type inequality via generalized preinvexities are explored. Finally, we discuss some applications to the q-digamma and Bessel functions via the established results. We believe that the methodologies and approaches presented in this work will intrigue and spark the researcher’s interest even more. Full article
23 pages, 7673 KiB  
Article
Comparative Study of Metaheuristic Optimization of Convolutional Neural Networks Applied to Face Mask Classification
Math. Comput. Appl. 2023, 28(6), 107; https://doi.org/10.3390/mca28060107 - 01 Nov 2023
Viewed by 1220
Abstract
The preventive measures taken to curb the spread of COVID-19 have emphasized the importance of wearing face masks to prevent potential infection with serious diseases during daily activities or for medical professionals working in hospitals. Due to the mandatory use of face masks, [...] Read more.
The preventive measures taken to curb the spread of COVID-19 have emphasized the importance of wearing face masks to prevent potential infection with serious diseases during daily activities or for medical professionals working in hospitals. Due to the mandatory use of face masks, various methods employing artificial intelligence and deep learning have emerged to detect whether individuals are wearing masks. In this paper, we utilized convolutional neural networks (CNNs) to classify the use of face masks into three categories: no mask, incorrect mask, and proper mask. Establishing the appropriate CNN architecture can be a demanding task. This study compares four swarm intelligent metaheuristics: particle swarm optimization (PSO), grey wolf optimizer (GWO), bat algorithm (BA), and whale optimization algorithm (WOA). The CNN architecture design involves determining the essential hyperparameters of the CNNs. The results indicate the effectiveness of the PSO and BA in achieving an accuracy of 100% when using 10% of the images for testing. Meanwhile, when 90% of the images were used for testing, the results were as follows: PSO 97.15%, WOA 97.14%, BA 97.23%, and GWO 97.18%. These statistically significant differences demonstrate that the BA allows better results than the other metaheuristics analyzed in this study. Full article
Show Figures

Figure 1

21 pages, 1445 KiB  
Article
Model-Based Assessment of Elastic Material Parameters in Rheumatic Heart Disease Patients and Healthy Subjects
Math. Comput. Appl. 2023, 28(6), 106; https://doi.org/10.3390/mca28060106 - 01 Nov 2023
Viewed by 930
Abstract
Non-invasive measurements are important for the development of new treatments for heart failure, which is one of the leading causes of death worldwide. This study aimed to develop realistic subject-specific computational models of human biventricles using clinical data. Three-dimensional finite element models of [...] Read more.
Non-invasive measurements are important for the development of new treatments for heart failure, which is one of the leading causes of death worldwide. This study aimed to develop realistic subject-specific computational models of human biventricles using clinical data. Three-dimensional finite element models of the human ventricles were created using cardiovascular magnetic resonance images of rheumatic heart disease (RHD) patients and healthy subjects. The material parameter optimization uses inverse modeling based on the finite element method combined with the Levenberg–Marquardt method (LVM) by targeting subject-specific hemodynamics. The study of elastic myocardial parameters between healthy subjects and RHD patients showed an elevated stiffness in diseased hearts. In particular, the anisotropic material behavior of the healthy and diseased cardiac tissue significantly differed from one another. Furthermore, as the LVEF decreased, the stiffness and its orientation-dependent parameters increased. The simulation-derived LV myocardial circumferential and longitudinal stresses were negatively associated with the LVEF. The sensitivity analysis result demonstrated that the observed significant difference between the elastic material parameters of diseased and healthy myocardium was not exclusively attributable to an increased LVEDP in the diseased heart. These results could be applied to future computational studies for developing heart failure treatment. Full article
(This article belongs to the Special Issue Current Problems and Advances in Computational and Applied Mechanics)
Show Figures

Figure 1

16 pages, 968 KiB  
Article
Modelization of Low-Cost Maneuvers for an Areostationary Preliminary Mission Design
Math. Comput. Appl. 2023, 28(6), 105; https://doi.org/10.3390/mca28060105 - 27 Oct 2023
Viewed by 840
Abstract
The aim of this paper is to analyze the determination of interplanetary trajectories from Earth to Mars to evaluate the cost of the required impulse magnitudes for an areostationary orbiter mission design. Such analysis is first conducted by solving the Lambert orbital boundary [...] Read more.
The aim of this paper is to analyze the determination of interplanetary trajectories from Earth to Mars to evaluate the cost of the required impulse magnitudes for an areostationary orbiter mission design. Such analysis is first conducted by solving the Lambert orbital boundary value problem and studying the launch and arrival conditions for various date combinations. Then, genetic algorithms are applied to investigate the minimum-energy transfer orbit. Afterwards, an iterative procedure is used to determine the heliocentric elliptic transfer orbit that matches at the entry point of Mars’s sphere of influence with an areocentric hyperbolic orbit imposing specific conditions on inclination and periapsis radius. Finally, the maneuvers needed to obtain an areostationary orbit are numerically computed for different objective condition values at the Mars entry point to evaluate an areostationary preliminary mission cost for further study and characterization. Results show that, for the dates of the minimum-energy Earth–Mars transfer trajectory, a low value for the maneuvers to achieve an areostationary orbit is obtained for an arrival hyperbola with the minimum possible inclination and a capture into an elliptical trajectory with a low periapsis radius and an apoapsis at the stationary orbit. For a 2026 mission with a TOF of 304 for the minimum-energy Earth–Mars transfer trajectory, for a capture with a periapsis of 300 km above the Mars surface the value achieved will be 2.083 km/s. Full article
Show Figures

Figure 1

Back to TopTop