Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,279)

Search Parameters:
Journal = Climate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9380 KiB  
Article
Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models
Climate 2024, 12(1), 9; https://doi.org/10.3390/cli12010009 - 14 Jan 2024
Viewed by 194
Abstract
Understanding long-term variations in precipitation is crucial for identifying the effects of climate change and addressing hydrological and water management issues. This study examined the trends of the mean and four extreme precipitation indices, which are the max 1-day precipitation amount, the max [...] Read more.
Understanding long-term variations in precipitation is crucial for identifying the effects of climate change and addressing hydrological and water management issues. This study examined the trends of the mean and four extreme precipitation indices, which are the max 1-day precipitation amount, the max 5-day precipitation amount, the consecutive wet days, and the consecutive dry days, for historical observations (1971–2000) and two future periods (2041–2060/2081–2100) under RCP2.6 and RCP8.5 emission scenarios over the Nile River Basin (NRB) at 11 major stations. Firstly, the empirical quantile mapping procedure significantly improved the performance of all RCMs, particularly those with lower performance, decreasing inter-model variability and enhanced seasonal precipitation variability. The Mann–Kendall test was used to detect the trends in climate extreme indices. This study reveals that precipitation changes vary across stations, scenarios, and time periods. Addis Ababa and Kigali anticipated a significant increase in precipitation across all periods and scenarios, ranging between 8–15% and 13–27%, respectively, while Cairo and Kinshasa exhibited a significant decrease in precipitation at around 90% and 38%, respectively. Wet (dry) spells were expected to significantly decrease (increase) over most parts of the NRB, especially during the second period (2081–2100). Thereby, the increase (decrease) in dry (wet) spells could have a direct impact on water resource availability in the NRB. This study also highlights that increased greenhouse gas emissions have a greater impact on precipitation patterns. This study’s findings might be useful to decision makers as they create NRB-wide mitigation and adaptation strategies to deal with the effects of climate change. Full article
Show Figures

Figure 1

18 pages, 10007 KiB  
Article
Climatology of Synoptic Non-Gaussian Meteorological Anomalies in the Northern Hemisphere during 1979–2018
Climate 2024, 12(1), 8; https://doi.org/10.3390/cli12010008 - 12 Jan 2024
Viewed by 205
Abstract
The analysis of spatial and temporal variability in the number of non-Gaussian extreme anomalies of climatic parameters was carried out for both the initial time series and synoptic variability in the troposphere of the Northern Hemisphere over the period 1979–2018, based on ERA-Interim [...] Read more.
The analysis of spatial and temporal variability in the number of non-Gaussian extreme anomalies of climatic parameters was carried out for both the initial time series and synoptic variability in the troposphere of the Northern Hemisphere over the period 1979–2018, based on ERA-Interim reanalysis data. There are predominantly three types of empirical distribution densities at 850 hPa, each characterizing the processes of advective and convective heat transfer. At the beginning of the 21st century, compared to the end of the 20th century, there was an increase in the number of anomalies in vertical wind speed and specific humidity for the Northern Hemisphere. Additionally, there is an increase in the number of zonal wind speed anomalies in the low and middle latitudes. Regions with the maximum number of anomalies are primarily located over the continents, while for vertical wind speed anomalies, they are predominantly over the oceans. The application of R/S analysis and multifractal analysis has established that the identified tendencies (which are persistent processes) will continue in the identified regions. The time series of non-Gaussian anomalies (both initial and synoptic scales) exhibit a long-term memory of approximately four years, and synoptic extreme anomalies were found to be more predictable. Full article
(This article belongs to the Special Issue The Importance of Long Climate Records)
Show Figures

Figure 1

22 pages, 7684 KiB  
Article
Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa
Climate 2024, 12(1), 7; https://doi.org/10.3390/cli12010007 - 11 Jan 2024
Viewed by 254
Abstract
The increasing drought frequency poses a significant threat to global and regional river systems and ecosystem functioning, especially in the complex topographical Buffalo River catchment area of the Eastern Cape Province, South Africa. This study explored the impact of drought on riparian vegetation [...] Read more.
The increasing drought frequency poses a significant threat to global and regional river systems and ecosystem functioning, especially in the complex topographical Buffalo River catchment area of the Eastern Cape Province, South Africa. This study explored the impact of drought on riparian vegetation dynamics using the Normalize Difference Vegetation Index (NDVI), Transformed Difference Vegetation Index (TDVI) and Modified Normalized Difference Water Index (MNDWI) from satellite-derived Landsat data from 1990 to 2020. The least-squares linear regression and Pearson’s correlation coefficient were used to evaluate the long-term drought in riparian vegetation cover and the role of precipitation and streamflow. The correlation results revealed a moderate positive correlation (r = 0.77) between precipitation and streamflow with a significant p-value of 0.04 suggesting consequences on riparian vegetation health. Concurrent with the precipitation, the vegetation trends showed that precipitation increased insignificantly with less of an influence while the reverse was the case with the streamflow in the long term. The results show that the NDVI and TDVI were significant indices for detecting water-stressed vegetation in river catchment dynamics. Much of these changes were reflected for MNDWI in dry areas with a higher accuracy (87.47%) and dense vegetation in the upper catchment areas. The standardized precipitation index (SPI) revealed the inter-annual and inter-seasonal variations in drought-stressed years between 1991–1996, 2000–2004, 2009–2010, 2015, and 2018–2019, while 2020 exhibited slight sensitivity to drought. The findings of this study underscore the need for heightened efforts on catchment-scale drought awareness for policy development, programs, and practices towards ecosystem-based adaptation. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

35 pages, 32978 KiB  
Article
Microclimate Analysis of Outdoor Showcases in Tropical Climate—Two Case Studies in Al Ain, Abu Dhabi, United Arab Emirates
Climate 2024, 12(1), 6; https://doi.org/10.3390/cli12010006 - 06 Jan 2024
Viewed by 519
Abstract
Al Ain, near Abu Dhabi, United Arab Emirates, is characterized by hot desert climate with high temperatures, aridity, and almost no rain. Several truncated earthen walls were discovered at the historic house of Sheikh Mohammed Bin Khalifa, a component of the World Heritage [...] Read more.
Al Ain, near Abu Dhabi, United Arab Emirates, is characterized by hot desert climate with high temperatures, aridity, and almost no rain. Several truncated earthen walls were discovered at the historic house of Sheikh Mohammed Bin Khalifa, a component of the World Heritage Cultural Sites. These remains are preserved in situ, outdoors, protected in glass showcases for public display. As this situation is not documented in the literature, the local Authority has requested to study the showcase environment to optimize conservation. The solar radiation and the projected shades have been modeled over one year; the temperature and humidity inside and outside the showcases, as well as the moisture content, have been measured to assess the potential preservation risks. The paper presents the results, i.e., the direct solar radiation generates extreme conditions of greenhouse effect with extremely high temperatures and forces evaporation from the remains. During the night, the excess moisture condenses on the inner surface of the glass panes, forming large drops that affect viewing and are dangerous for conservation. The repetition of evaporation–condensation cycles accumulates soluble salts on the remains. The paper discusses mitigation strategies (e.g., shading, ventilation, and cooling, to reduce the greenhouse effect) to improve conservation and fruition. Full article
(This article belongs to the Special Issue Climate Variability in the Mediterranean Region)
Show Figures

Figure 1

17 pages, 2199 KiB  
Article
Assessment of Climate Risks, Vulnerability of Urban Health Systems, and Individual Adaptation Strategies in the City of N’Djaména (Chad)
Climate 2024, 12(1), 5; https://doi.org/10.3390/cli12010005 - 30 Dec 2023
Viewed by 1291
Abstract
Climate variability and change are already having a negative impact on the health of tens of millions of Africans through exposure to sub-optimal temperatures and extreme weather conditions as well as increasing the range and transmission of infectious diseases. This study aims to [...] Read more.
Climate variability and change are already having a negative impact on the health of tens of millions of Africans through exposure to sub-optimal temperatures and extreme weather conditions as well as increasing the range and transmission of infectious diseases. This study aims to identify climate risks and the vulnerability of health systems as well as individual coping strategies in the city of N’Djaména. To achieve this, we adopted a methodology combining both quantitative and qualitative approaches. Meteorological data on wind, temperature, and rainfall were collected at daily and monthly intervals from the National Meteorological Agency in N’Djaména. Qualitative data were collected via focus group discussions with targets of the city’s health system and quantitative data were collected from the population on the basis of oriented questionnaires. The results show that rising temperatures with heat waves, regular flooding, and strong winds are the major climate risks identified. These have numerous impacts and effects on the city’s health system due to the following vulnerability factors most recognized by city dwellers: insufficient medical equipment in health facilities (IEME), the fragile nature of people’s physiological state in the face of climatic risks (CFEP), and the failure of city sanitation strategies and policies (DSPA). This study proposes a set of recommendations for transformational adaptation of the healthcare sector, which remains vulnerable to climate risks. Full article
Show Figures

Figure 1

23 pages, 24014 KiB  
Article
Characterisation of Morphological Patterns for Land Surface Temperature Distribution in Urban Environments: An Approach to Identify Priority Areas
Climate 2024, 12(1), 4; https://doi.org/10.3390/cli12010004 - 28 Dec 2023
Viewed by 578
Abstract
The validated influence of urban biophysical structure on environmental processes within urban areas has heightened the emphasis on studies examining morphological patterns to determine precise locations and underlying causes of urban climate conditions. The present study aims to characterise morphological patterns describing the [...] Read more.
The validated influence of urban biophysical structure on environmental processes within urban areas has heightened the emphasis on studies examining morphological patterns to determine precise locations and underlying causes of urban climate conditions. The present study aims to characterise morphological patterns describing the distribution of Land Surface Temperature (LST) based on a prior classification of biophysical variables, including urban density (building intensity and average height), surface characteristics, shortwave solar radiation (broadband albedo), and seasonal variations in vegetation cover (high, medium, and low levels), retrieved from multisource datasets. To describe the distribution of LST, the variables were calculated, classified, and subsequently, analysed individually and collectively concerning winter and summer LST values applied in an urban neighbourhood in Madrid, Spain. The results from the analytical approaches (observation, correlations, and multiple regressions) were compared to define the morphological patterns. The selection of areas resulting from the morphological patterns with the most unfavourable LST values showed agreement of up to 89% in summer and up to 70% for winter, demonstrating the feasibility of the methods applied to identify priority areas for intervention by season. Notably, low and high vegetation levels emerged as pivotal biophysical characteristics influencing LST distribution compared to the other characteristics, emphasising the significance of integrating detailed seasonal vegetation variations in urban analyses. Full article
(This article belongs to the Section Climate Change and Urban Ecosystems)
Show Figures

Figure 1

35 pages, 4374 KiB  
Review
Climate Risks Resilience Development: A Bibliometric Analysis of Climate-Related Early Warning Systems in Southern Africa
Climate 2024, 12(1), 3; https://doi.org/10.3390/cli12010003 - 26 Dec 2023
Viewed by 943
Abstract
Early warning systems (EWS) facilitate societies’ preparedness and effective response capabilities to climate risks. Climate risks embody hazards, exposure, and vulnerability associated with a particular geographical area. Building an effective EWS requires consideration of the factors above to help people with coping mechanisms. [...] Read more.
Early warning systems (EWS) facilitate societies’ preparedness and effective response capabilities to climate risks. Climate risks embody hazards, exposure, and vulnerability associated with a particular geographical area. Building an effective EWS requires consideration of the factors above to help people with coping mechanisms. The objective of this paper is to propose an approach that can enhance EWSs and ensure an effective climate risk resilience development. The paper focuses on the Southern African Development Community (SADC) region and highlights the issues with EWS, identifying weaknesses and characteristics of EWS to help in climate risk adaptation strategies. The SADC region was chosen as the context because it is a climate variability and change hotspot with many vulnerable populations residing in rural communities. Trending themes on building climate risk resilience were uncovered through scientific mapping and network analysis of published articles from 2008 to 2022. This paper contributes to on-going research on building climate risks resilience through early warning systems to identify hidden trends and emerging technologies from articles in order to enhance the operationalization and design of EWS. This review provides insight into technological interventions for assessing climate risks to build preparedness and resilience. From the review analysis, it is determined that there exists a plethora of evidence to support the argument that involving communities in the co-designing of EWS would improve risk knowledge, anticipation, and preparedness. Additionally, Fourth Industrial Revolution (4IR) technologies provide effective tools to address existing EWS’ weaknesses, such as lack of real-time data collection and automation. However, 4IR technology is still at a nascent stage in EWS applications in Africa. Furthermore, policy across societies, institutions, and technology industries ought to be coordinated and integrated to develop a strategy toward implementing climate resilient-based EWS to facilitate the operations of disaster risk managers. The Social, Institutional, and Technology model can potentially increase communities’ resilience; therefore, it is recommended to develop EWS. Full article
(This article belongs to the Special Issue Hydroclimate Dynamics and Extreme Weather Events in Africa)
Show Figures

Figure 1

26 pages, 9189 KiB  
Article
Analysis of Climate Variability and Its Implications on Rangelands in the Limpopo Province
Climate 2024, 12(1), 2; https://doi.org/10.3390/cli12010002 - 24 Dec 2023
Viewed by 656
Abstract
In recent decades, southern Africa has experienced a shift towards hotter and drier climate conditions, affecting vital sectors like agriculture, health, water, and energy. Scientific research has shown that the combination of high temperatures and unreliable rainfall can have detrimental effects on agricultural [...] Read more.
In recent decades, southern Africa has experienced a shift towards hotter and drier climate conditions, affecting vital sectors like agriculture, health, water, and energy. Scientific research has shown that the combination of high temperatures and unreliable rainfall can have detrimental effects on agricultural production. Thus, this study focused on assessing climate variability, with implications on rangelands in the Limpopo Province of South Africa over 38 years. Historical climate data from 15 stations, including rainfall and minimum and maximum temperatures from 1980 to 2018, were analysed. To achieve the main objective, various statistics including mean, standard deviation, and coefficient of variation (CV) were computed for all variables across four seasons. The results highlighted significant variability in rainfall, with Musina (71.2%) and Tshiombo (88.3%) stations displaying the highest variability during the September-to-April season. Both minimum and maximum temperatures displayed low variability. The Mann–Kendall test revealed both increasing and decreasing trends in minimum temperatures and rainfall across different stations. Notably, there was a significant increase in maximum temperatures. This study provides valuable climate information for decision makers, aiding in the planning and management of agricultural activities, particularly in understanding how climate variations affect forage availability in rangelands. Full article
Show Figures

Figure 1

21 pages, 4960 KiB  
Article
Equilibrium Climate after Spectral and Bolometric Irradiance Reduction in Grand Solar Minimum Simulations
Climate 2024, 12(1), 1; https://doi.org/10.3390/cli12010001 - 19 Dec 2023
Viewed by 1329
Abstract
In this study, we use the Whole Atmosphere Community Climate Model, forced by present-day atmospheric composition and coupled to a Slab Ocean Model, to simulate the state of the climate under grand solar minimum forcing scenarios. Idealized experiments prescribe time-invariant solar irradiance reductions [...] Read more.
In this study, we use the Whole Atmosphere Community Climate Model, forced by present-day atmospheric composition and coupled to a Slab Ocean Model, to simulate the state of the climate under grand solar minimum forcing scenarios. Idealized experiments prescribe time-invariant solar irradiance reductions that are either uniform (percentage-wise) across the total solar radiation spectrum (TOTC) or spectrally localized in the ultraviolet (UV) band (SCUV). We compare the equilibrium condition of these experiments with the equilibrium condition of a control simulation, forced by perpetual solar maximum conditions. In SCUV, we observe large stratospheric cooling due to ozone reduction. In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH), this is accompanied by a weakening of the polar night jet during the cold season. In TOTC, dynamically induced polar stratospheric cooling is observed in the transition seasons over the NH, without any ozone deficit. The global temperature cooling values, compared with the control climate, are 0.55±0.03 K in TOTC and 0.39±0.03 K in SCUV. The reductions in total meridional heat transport outside of the subtropics are similar in the two experiments, especially in the SH. Despite substantial differences in stratospheric forcing, similarities exist between the two experiments, such as cloudiness; meridional heating transport in the SH; and strong cooling in the NH during wintertime, although this cooling affects two different regions, namely, North America in TOTC and the Euro–Asian continent in SCUV. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

18 pages, 1035 KiB  
Review
Examining the Heat Health Burden in Australia: A Rapid Review
Climate 2023, 11(12), 246; https://doi.org/10.3390/cli11120246 - 18 Dec 2023
Viewed by 898
Abstract
Extreme heat has been linked to increased mortality and morbidity across the globe. Increasing temperatures due to climatic change will place immense stress on healthcare systems. This review synthesises Australian literature that has examined the effect of hot weather and heatwaves on various [...] Read more.
Extreme heat has been linked to increased mortality and morbidity across the globe. Increasing temperatures due to climatic change will place immense stress on healthcare systems. This review synthesises Australian literature that has examined the effect of hot weather and heatwaves on various health outcomes. Databases including Web of Science, PubMed and CINAHL were systematically searched for articles that quantitatively examined heat health effects for the Australian population. Relevant, peer-reviewed articles published between 2010 and 2023 were included. Two authors screened the abstracts. One researcher conducted the full article review and data extraction, while another researcher randomly reviewed 10% of the articles to validate decisions. Our rapid review found abundant literature indicating increased mortality and morbidity risks due to extreme temperature exposures. The effect of heat on mortality was found to be mostly immediate, with peaks in the risk of death observed on the day of exposure or the next day. Most studies in this review were concentrated on cities and mainly included health outcome data from temperate and subtropical climate zones. There was a dearth of studies that focused on tropical or arid climates and at-risk populations, including children, pregnant women, Indigenous people and rural and remote residents. The review highlights the need for more context-specific studies targeting vulnerable population groups, particularly residents of rural and remote Australia, as these regions substantially vary climatically and socio-demographically from urban Australia, and the heat health impacts are likely to be even more substantial. Full article
(This article belongs to the Special Issue Recent Climate Change Impacts in Australia)
Show Figures

Figure 1

15 pages, 15571 KiB  
Article
Precipitation Projection in Cambodia Using Statistically Downscaled CMIP6 Models
Climate 2023, 11(12), 245; https://doi.org/10.3390/cli11120245 - 16 Dec 2023
Viewed by 1041
Abstract
The consequences of climate change are arising in the form of many types of natural disasters, such as flooding, drought, and tropical cyclones. Responding to climate change is a long horizontal run action that requires adaptation and mitigation strategies. Hence, future climate information [...] Read more.
The consequences of climate change are arising in the form of many types of natural disasters, such as flooding, drought, and tropical cyclones. Responding to climate change is a long horizontal run action that requires adaptation and mitigation strategies. Hence, future climate information is essential for developing effective strategies. This study explored the applicability of a statistical downscaling method, Bias-Corrected Spatial Disaggregation (BCSD), in downscaling climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and then applied the downscaled data to project the future condition of precipitation pattern and extreme events in Cambodia. We calculated four climate change indicators, namely mean precipitation changes, consecutive dry days (CDD), consecutive wet days (CWD), and maximum one-day precipitation (rx1day) under two shared socioeconomic pathways (SSPs) scenarios, which are SSP245 and SSP585. The results indicated the satisfactory performance of the BCSD method in capturing the spatial feature of orographic precipitation in Cambodia. The analysis of downscaled CMIP6 models shows that the mean precipitation in Cambodia increases during the wet season and slightly decreases in the dry season, and thus, there is a slight increase in annual rainfall. The projection of extreme climate indices shows that the CDD would likely increase under both climate change scenarios, indicating the potential threat of dry spells or drought events in Cambodia. In addition, CWD would likely increase under the SSP245 scenario and strongly decrease in the eastern part of the country under the SSP585 scenario, which inferred that the wet spell would have happened under the moderate scenario of climate change, but it would be the opposite under the SSP585 scenario. Moreover, rx1day would likely increase over most parts of Cambodia, especially under the SSP585 scenario at the end of the century. This can be inferred as a potential threat to extreme rainfall triggering flood events in the country due to climate change. Full article
Show Figures

Figure 1

12 pages, 2831 KiB  
Article
Homogeneity Assessment and Correction Methodology for the 1980–2022 Daily Temperature Series in Padua, Italy
Climate 2023, 11(12), 244; https://doi.org/10.3390/cli11120244 - 15 Dec 2023
Viewed by 842
Abstract
Meteorological observations over the last four decades are of paramount importance to investigating ongoing climate change. An important issue is the quality and reliability of the climatic series, which are fundamental prerequisites to drawing the correct conclusions. Homogeneity tests are used to detect [...] Read more.
Meteorological observations over the last four decades are of paramount importance to investigating ongoing climate change. An important issue is the quality and reliability of the climatic series, which are fundamental prerequisites to drawing the correct conclusions. Homogeneity tests are used to detect discontinuities whose interpretation is facilitated by metadata availability. In this work, daily minimum and maximum temperature measurements collected in Padua, Italy, between 1980 and 2022 are examined. During this period, the weather station of Padua center underwent many changes in location or instruments; therefore, some tests have been used to identify and remove their effects and obtain homogeneous series. Some well-known absolute tests have been applied to investigate the shift in the mean value: Standard Normal Homogeneity test (SNH), Buishand U and range tests, Pettitt test, F-test, and STARS. Relative tests have been applied too, using several stations nearby Padua and two reanalysis datasets (ERA5 and MERIDA) as reference series to enhance the picture of the local situation and provide more robust conclusions. The applied tests identify change-points in the years in which a change in instrument or the location of the station has occurred, confirming that these changes have compromised the homogeneity of the series. The sub-series obtained, splitting the observations in correspondence with these change-points, have been homogenized with respect to a selected period. The corrected series of the minimum and maximum temperatures are more coherent with the modern warming trend. The transfer functions to be applied to future measurements of minimum temperature have been calculated, while the series of maximum temperature measurements can be directly extended. Full article
(This article belongs to the Special Issue Climate Variability in the Mediterranean Region)
Show Figures

Figure 1

25 pages, 5458 KiB  
Article
Linking Climate Change Information with Crop Growing Seasons in the Northwest Ethiopian Highlands
Climate 2023, 11(12), 243; https://doi.org/10.3390/cli11120243 - 15 Dec 2023
Viewed by 824
Abstract
In Ethiopia, the impacts of climate change are expected to have significant consequences for agriculture and food security. This study investigates both past (1981–2010) and future (2041–2070) climate trends and their influence on the length of the growing season (LGS) in the North-Western [...] Read more.
In Ethiopia, the impacts of climate change are expected to have significant consequences for agriculture and food security. This study investigates both past (1981–2010) and future (2041–2070) climate trends and their influence on the length of the growing season (LGS) in the North-Western Ethiopian highlands. Climate observations were obtained from the National Meteorological Agency of Ethiopia, while the best performing and highest resolution models from the CMIP5 experiment and RCP6 (Coupled Models Intercomparison Project and representative concentration pathway 6) were used for the analysis. Standard statistical methods were applied to compute soil water content, evaluate climate variability and trends, and assess their impact on the length of the growing season. Maximum temperature (tasmax) and minimum temperature (tasmin) inter-annual variability anomalies show that the region has experienced cooler years than hotter years in the past. However, in the future, the coolest years are expected to decrease by −1.2 °C, while the hottest years will increase by +1.3 °C. During the major rainfall season (JJAS), the area has received an adequate amount of rainfall in the past and is very likely to receive similar rainfall in the future. On the other hand, the rainfall amount in the season February to May (FMAM) is expected to assist only with early planting. For the season October to January (ONDJ), the rainfall amount may help lengthen the growing season of JJAS if properly utilized; otherwise, the season has the potential to destroy crops before and during the harvesting time. The soil water content changes in the future remain close to those of the past period. The length of growing seasons has less variable onset and cessation dates, while in the future, the length of the growing period (LGP) of 174 to 177 days will be suitable for short- and long-cycle crops, as well as double cropping, benefiting crop production yield in the North-Western Ethiopian highlands in the future. Full article
Show Figures

Figure 1

21 pages, 11232 KiB  
Article
Multi-Hazard Extreme Scenario Quantification Using Intensity, Duration, and Return Period Characteristics
Climate 2023, 11(12), 242; https://doi.org/10.3390/cli11120242 - 12 Dec 2023
Viewed by 946
Abstract
Many modern frameworks for community resilience and emergency management in the face of extreme hydrometeorological and climate events rely on scenario building. These scenarios typically cover multiple hazards and assess the likelihood of their occurrence. They are quantified by their main characteristics, including [...] Read more.
Many modern frameworks for community resilience and emergency management in the face of extreme hydrometeorological and climate events rely on scenario building. These scenarios typically cover multiple hazards and assess the likelihood of their occurrence. They are quantified by their main characteristics, including likelihood of occurrence, intensity, duration, and spatial extent. However, most studies in the literature focus only on the first two characteristics, neglecting to incorporate the internal hazard dynamics and their persistence over time. In this study, we propose a multidimensional approach to construct extreme event scenarios for multiple hazards, such as heat waves, cold spells, extreme precipitation and snowfall, and wind speed. We consider the intensity, duration, and return period (IDRP) triptych for a specific location. We demonstrate the effectiveness of this approach by developing pertinent scenarios for eight locations in Greece with diverse geographical characteristics and dominant extreme hazards. We also address how climate change impacts the scenario characteristics. Full article
(This article belongs to the Special Issue Climate and Weather Extremes: Volume II)
Show Figures

Figure 1

28 pages, 14261 KiB  
Article
Intercomparison of Different Sources of Precipitation Data in the Brazilian Legal Amazon
Climate 2023, 11(12), 241; https://doi.org/10.3390/cli11120241 - 09 Dec 2023
Viewed by 1244
Abstract
Monitoring rainfall in the Brazilian Legal Amazon (BLA), which comprises most of the largest tropical rainforest and largest river basin on the planet, is extremely important but challenging. The size of the area and land cover alone impose difficulties on the operation of [...] Read more.
Monitoring rainfall in the Brazilian Legal Amazon (BLA), which comprises most of the largest tropical rainforest and largest river basin on the planet, is extremely important but challenging. The size of the area and land cover alone impose difficulties on the operation of a rain gauge network. Given this, we aimed to evaluate the performance of nine databases that estimate rainfall in the BLA, four from gridded analyses based on pluviometry (Xavier, CPC, GPCC and CRU), four based on remote sensing (CHIRPS, IMERG, CMORPH and PERSIANN-CDR), and one from reanalysis (ERA5Land). We found that all the bases are efficient in characterizing the average annual cycle of accumulated precipitation in the BLA, but with a predominantly negative bias. Parameters such as Pearson’s correlation (r), root-mean-square error (RMSE) and Taylor diagrams (SDE), applied in a spatial analysis for the entire BLA as well as for six pluviometrically homogeneous regions, showed that, based on a skill ranking, the data from Xavier’s grid analysis, CHIRPS, GPCC and ERA5Land best represent precipitation in the BLA at monthly, seasonal and annual levels. The PERSIANN-CDR data showed intermediate performance, while the IMERG, CMORPH, CRU and CPC data showed the lowest correlations and highest errors, characteristics also captured in the Taylor diagrams. It is hoped that this demonstration of hierarchy based on skill will subsidize climate studies in this region of great relevance in terms of biodiversity, water resources and as an important climate regulator. Full article
Show Figures

Figure 1

Back to TopTop