Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,925)

Search Parameters:
Journal = Catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2061 KiB  
Article
Synergistic Effect of Structure and Morphology of ZSM-5 Catalysts on the Transformation of Methanol to Propylene
Catalysts 2024, 14(1), 67; https://doi.org/10.3390/catal14010067 - 15 Jan 2024
Viewed by 15
Abstract
Here, the efficient synthesis of propylene from methanol was achieved using a series of HZSM-5 catalysts. The effect of the structure and morphology of ZSM-5 on the conversion of methanol to propylene was studied. The structure and physicochemical properties of the synthesized catalysts [...] Read more.
Here, the efficient synthesis of propylene from methanol was achieved using a series of HZSM-5 catalysts. The effect of the structure and morphology of ZSM-5 on the conversion of methanol to propylene was studied. The structure and physicochemical properties of the synthesized catalysts were analyzed by multiple characterization techniques. The characterization results revealed that the alumina content rationally modified the acid properties of ZSM-5. When using a ZSM-5 catalyst with a hexagonal single crystal and a Si/Al ratio of 177, the selectivity of propylene reached 39.7% at 480 °C. Furthermore, the formation of methane was reduced. This provides a clue for catalyst design to enable the selective transformation of methanol into propylene. Full article
(This article belongs to the Special Issue Catalytic Conversion of Low Carbon Alkane)
Show Figures

Graphical abstract

13 pages, 2810 KiB  
Article
Pd-Bi-Based Catalysts for Selective Oxidation of Glucose into Gluconic Acid: The Role of Local Environment of Nanoparticles in Dependence of Their Composition
Catalysts 2024, 14(1), 66; https://doi.org/10.3390/catal14010066 - 15 Jan 2024
Viewed by 63
Abstract
Palladium–bismuth nanomaterials are used in various chemical applications such detectors, electrodes, and catalysts. Pd-Bi catalysts are attracting widespread interest because these catalysts enable the production of valuable products quickly and efficiently, and are environmentally friendly. However, the composition of the catalyst can have [...] Read more.
Palladium–bismuth nanomaterials are used in various chemical applications such detectors, electrodes, and catalysts. Pd-Bi catalysts are attracting widespread interest because these catalysts enable the production of valuable products quickly and efficiently, and are environmentally friendly. However, the composition of the catalyst can have a significant impact on its catalytic performance. In this work, we identified a correlation between the composition of the catalyst and its efficiency in converting glucose into sodium gluconate. It was found that the conversion decreases with increasing bismuth content. The most active catalyst was the 0.35Bi:Pd sample with a lower bismuth content (glucose conversion of 57%). TEM, SEM, EXAFS, and XANES methods were used to describe, in detail, the surface properties of the xBi:Pd/Al2O3 catalyst samples. The increase in particle size with increasing bismuth content, observed in the TEM micrographs, was associated with the low melting point of bismuth (271 °C). The SEM method showed that palladium and bismuth particles were uniformly distributed over the surface of the support in close proximity to each other, which allowed us to conclude that an alloy of non-stoichiometric composition was formed. The EXAFS and XANES methods established that bismuth was located on the surface of the nanoparticle predominantly in an oxidized state. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Graphical abstract

10 pages, 8171 KiB  
Article
Hydrochloric Acid Catalyzed Hydrothermal Treatment to Recover Phosphorus from Municipal Sludge
Catalysts 2024, 14(1), 65; https://doi.org/10.3390/catal14010065 - 15 Jan 2024
Viewed by 100
Abstract
Resource utilization of sludge is critical because traditional sludge treatment methods cause a large amount of nutrient loss. This study investigated the impact of hydrochloric acid quantity, reaction temperature, and time on phosphorus release and migration from municipal sludge during hydrothermal treatment and [...] Read more.
Resource utilization of sludge is critical because traditional sludge treatment methods cause a large amount of nutrient loss. This study investigated the impact of hydrochloric acid quantity, reaction temperature, and time on phosphorus release and migration from municipal sludge during hydrothermal treatment and designed a sludge disposal method for the recovery and utilization of phosphorus resources. We know that hydrochloric acid destroys the complexation of calcium and phosphorus precipitates, leading to the selective transfer of phosphorus to the liquid phase, and that the addition of 1–5% hydrochloric acid corresponds to a phosphorus extraction rate in the range of 0.3–98%. When hydrochloric acid is added, a change in temperature and reaction time has a negligible effect on phosphorus. Phosphorus can be recovered using the liquid product obtained under the optimal hydrothermal reaction conditions (adding 5% HCl at 205 °C for 30 min). After adjusting the pH value and adding the magnesium source, struvite (MgNH4PO4·6H2O) can be precipitated quickly and with high purity. At a cost of USD 27.8/ton of sludge, this method can recover 94% of the phosphorus in the sludge, and the bioavailable phosphorus ratio of the product is 93%, therefore, providing an important alternative to existing phosphorus recovery technologies. Full article
Show Figures

Graphical abstract

14 pages, 3652 KiB  
Article
Identification of Aniline-Degrading Bacteria Using Stable Isotope Probing Technology and Prediction of Functional Genes in Aerobic Microcosms
Catalysts 2024, 14(1), 64; https://doi.org/10.3390/catal14010064 - 15 Jan 2024
Viewed by 193
Abstract
Aniline, a vital component in various chemical industries, is known to be a hazardous persistent organic pollutant that can cause environmental pollution through its manufacturing, processing, and transportation. In this study, the microcosms were established using sediment with a history of aniline pollution [...] Read more.
Aniline, a vital component in various chemical industries, is known to be a hazardous persistent organic pollutant that can cause environmental pollution through its manufacturing, processing, and transportation. In this study, the microcosms were established using sediment with a history of aniline pollution as an inoculum to analyze the aniline biodegradation under aerobic conditions through stable isotope probing (SIP) and isopycnic density gradient centrifugation technology. During the degradation assay, aniline that was 13C-labeled in all six carbons was utilized to determine the phylogenetic identity of the aniline-degrading bacterial taxa that incorporate 13C into their DNA. The results revealed that aniline was completely degraded in the microcosm after 45 and 69 h respectively. The bacteria affiliated with Acinetobacter (up to 34.6 ± 6.0%), Zoogloea (up to 15.8 ± 2.2%), Comamonas (up to 2.6 ± 0.1%), and Hydrogenophaga (up to 5.1 ± 0.6%) genera, which are known to degrade aniline, were enriched in the heavy fractions (the DNA buoyant density was 1.74 mg L−1) of the 13C-aniline treatments. Moreover, some rarely reported aniline-degrading bacteria, such as Prosthecobacter (up to 16.0 ± 1.6%) and Curvibacter (up to 3.0 ± 1.6%), were found in the DNA-SIP experiment. Gene families affiliated with atd, tdn, and dan were speculated to be key genes for aniline degradation based on the abundance in functional genes and diversity in different treatments as estimated using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States version 2 (PICRUSt2) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). This study revealed the functional bacteria and possible degradation genes for aniline degradation in simulated polluted environments through SIP. These findings suggest that important degrading bacteria for the transformation of aniline and potential degradation pathways may be useful in the effective application of bioremediation technologies to remediate aniline-contaminated sites. Full article
(This article belongs to the Special Issue Microbial Biocatalysis, 2nd Edition)
Show Figures

Figure 1

12 pages, 4682 KiB  
Article
Unraveling FeOx Nanoparticles Confined on Fibrous Mesoporous Silica Catalyst Construction and CO Catalytic Oxidation Performance
Catalysts 2024, 14(1), 63; https://doi.org/10.3390/catal14010063 - 14 Jan 2024
Viewed by 267
Abstract
Catalytic oxidation is used to control carbon monoxide (CO) emissions from industrial exhaust. In this study, a mesoporous silica material, KCC-1, was synthesized and used as a carrier with a high specific surface area to confine active component FeOx nanoparticles (NPs), and [...] Read more.
Catalytic oxidation is used to control carbon monoxide (CO) emissions from industrial exhaust. In this study, a mesoporous silica material, KCC-1, was synthesized and used as a carrier with a high specific surface area to confine active component FeOx nanoparticles (NPs), and the CO catalytic oxidation performance of x%Fe@KCC-1 catalysts (x represents the mass loading of Fe) was studied. The experimental results showed that due to its large specific surface area and abundant mesopores, the FeOx NPs were highly dispersed on the surface of the KCC-1 carrier. The particle size of FeOx was very small, resulting in strong interactions between FeOx NPs and KCC-1, which enhanced the catalytic oxidation reaction on the catalyst. The FeOx loading improved the CO adsorption capability of the catalyst, which facilitated the catalytic oxidation of CO, with the 7%Fe@KCC-1 catalyst achieving 100% CO conversion at 160°C. The CO catalytic removal mechanism was investigated by a combination of in-situ DRIFTS and DFT calculations. This study advances scientific understanding of the application potential of nano-catalysts in important oxidation reactions and provides valuable insights into the development of efficient CO oxidation catalysts. Full article
28 pages, 8038 KiB  
Article
Green Fabrication of ZnO Nanoparticles and ZnO/rGO Nanocomposites from Algerian Date Syrup Extract: Synthesis, Characterization, and Augmented Photocatalytic Efficiency in Methylene Blue Degradation
Catalysts 2024, 14(1), 62; https://doi.org/10.3390/catal14010062 - 13 Jan 2024
Viewed by 350
Abstract
This innovative article provides a detailed description of the successful biosynthesis of zinc nanoparticles (ZnO-NPs) using an aqueous extract of Algerian Date Syrup, also known as molasses. A meticulous process was carried out to determine the optimal calcination temperature for ZnO-NPs, a crucial [...] Read more.
This innovative article provides a detailed description of the successful biosynthesis of zinc nanoparticles (ZnO-NPs) using an aqueous extract of Algerian Date Syrup, also known as molasses. A meticulous process was carried out to determine the optimal calcination temperature for ZnO-NPs, a crucial step in the preparation of these nanoparticles. The study was further extended by creating ZnO/rGOx nanocomposites through a hydrothermal method, varying the concentrations of reduced graphene oxide (rGO) at 5%, 10%, and 15%. The characteristics of the nanocomposites were thoroughly explored, encompassing chemical, optical, and morphological aspects, using sophisticated analysis techniques such as scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV DRS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). These analyses provided an in-depth understanding of the structure and properties of the nanocomposites. The centerpiece of this study is the evaluation of the photocatalytic degradation capacity of ZnO-NPs and ZnO/rGOx nanocomposites. These materials have demonstrated their ability to act as cost-effective and environmentally friendly photocatalysts for wastewater treatment. Experiments on methylene blue degradation under UV irradiation were conducted, yielding impressive results: a degradation efficiency of 86.6% was achieved in 140 min using 1 g/L of ZnO-NPs, and this rate reached 100% with the ZnO/rGO catalyst in the same time frame, highlighting its superiority as a photocatalyst. Furthermore, this study examined the variables affecting the photocatalysis experiment, including the solution’s pH and the amount of catalyst. The results revealed that the ZnO/rGO photocatalyst reached its optimal efficiency under neutral pH conditions and at a concentration of 1 g/L, providing crucial information for practical use of these materials. This enriched article highlights the promising potential of ZnO-NPs and ZnO/rGOx nanocomposites as efficient photocatalysts for methylene blue degradation, paving the way for significant environmental applications in wastewater treatment. Full article
Show Figures

Graphical abstract

15 pages, 1706 KiB  
Article
Kinetic Modeling of the Direct Dimethyl Ether (DME) Synthesis over Hybrid Multi-Site Catalysts
Catalysts 2024, 14(1), 61; https://doi.org/10.3390/catal14010061 - 13 Jan 2024
Viewed by 167
Abstract
This paper deals with the proposition of a kinetic model for the direct synthesis of DME via CO2 hydrogenation in view of the necessary optimization of the catalytic system, reactor design, and process strategy. Despite the fact that DME synthesis is typically [...] Read more.
This paper deals with the proposition of a kinetic model for the direct synthesis of DME via CO2 hydrogenation in view of the necessary optimization of the catalytic system, reactor design, and process strategy. Despite the fact that DME synthesis is typically treated as a mere combination of two separated catalytic steps (i.e., methanol synthesis and methanol dehydration), the model analysis is now proposed by taking into account the improvements related to the process running over a hybrid catalyst in a rational integration of the two catalytic steps, with boundary conditions properly assumed from the thermodynamics of direct DME synthesis. Specifically, the CO2 activation step at the metal–oxide interface in the presence of ZrO2 has been described for the first time through the introduction of an ad hoc mechanism based on solid assumptions from inherent studies in the literature. The kinetic modeling was investigated in a tubular fixed-bed reactor operating from 200 to 260 °C between 1 and 50 bar as a function of a gas hourly space velocity ranging from 2500 to 60,000 NL/kgcat/h, in a stoichiometric CO2/H2 feed mixture of 1:3 v/v. A well-detailed elementary mechanism was used to predict the CO2 conversion rate and identify the key reaction pathways, starting with the analysis of the implicated reactions and corresponding kinetic mechanisms and expressions, and finally estimating the main parameters based on an appropriate modeling of test conditions. Full article
Show Figures

Graphical abstract

23 pages, 11426 KiB  
Review
Platinum Alloys for Methanol Oxidation Electrocatalysis: Reaction Mechanism and Rational Design of Catalysts with Exceptional Activity and Stability
Catalysts 2024, 14(1), 60; https://doi.org/10.3390/catal14010060 - 12 Jan 2024
Viewed by 155
Abstract
Direct methanol fuel cells have emerged as highly promising energy conversion devices in the past few decades. However, some challenges, such as carbon monoxide (CO) poisoning and unsatisfactory long-term stability, remain for platinum (Pt) as a methanol oxidation reaction (MOR) catalyst. This review [...] Read more.
Direct methanol fuel cells have emerged as highly promising energy conversion devices in the past few decades. However, some challenges, such as carbon monoxide (CO) poisoning and unsatisfactory long-term stability, remain for platinum (Pt) as a methanol oxidation reaction (MOR) catalyst. This review covers recent advances in Pt alloy MOR catalysts and provides some insights. This review presents MOR catalytic mechanisms based on CO or non-CO pathways. Typical dimension-based designs of MOR catalysts, such as anisotropic nanowires, metallene, nanoframes, and corresponding rationales for performance enhancements, are introduced. More importantly, some key tuning strategies are elaborated, including intermetallic compound synthesis, interface engineering, and surface facet engineering. High-entropy alloys as an intriguing class of MOR catalysts with favorable prospects are also discussed. Finally, future directions and opportunities are outlined. Full article
(This article belongs to the Special Issue Noble Metal-Based Nanomaterials for Heterogeneous Catalysis)
Show Figures

Figure 1

18 pages, 4018 KiB  
Article
From Waste to Catalyst: Transforming Mussel Shells into a Green Solution for Biodiesel Production from Jatropha curcas Oil
Catalysts 2024, 14(1), 59; https://doi.org/10.3390/catal14010059 - 12 Jan 2024
Viewed by 201
Abstract
This study introduces an innovative approach to sustainable biodiesel production using mussel shell-derived calcium oxide (CaO) as a catalyst for converting Jatropha curcas oil into biodiesel. By repurposing waste mussel shells, the research aims to provide an eco-friendly and cost-effective solution for environmentally [...] Read more.
This study introduces an innovative approach to sustainable biodiesel production using mussel shell-derived calcium oxide (CaO) as a catalyst for converting Jatropha curcas oil into biodiesel. By repurposing waste mussel shells, the research aims to provide an eco-friendly and cost-effective solution for environmentally responsible biodiesel production, aligning with global standards. The study involves characterizing the catalyst, optimizing reaction conditions, and achieving a remarkable 99.36% Fatty Acid Methyl Ester (FAME) yield, marking a significant step toward cleaner and more economically viable energy sources. Biodiesel, recognized for its lower emissions, is produced through transesterification using mussel shell-derived CaO as a sustainable catalyst. This research contributes to cleaner and economically viable energy sources, emphasizing the importance of sustainable energy solutions and responsible catalytic processes. This research bridges the gap between waste management, catalyst development, and sustainable energy production, contributing to the ongoing global shift towards cleaner and more economically viable energy sources. Full article
Show Figures

Figure 1

25 pages, 3341 KiB  
Review
Low-Temperature Electrochemical Oxidation of Methane into Alcohols
Catalysts 2024, 14(1), 58; https://doi.org/10.3390/catal14010058 - 12 Jan 2024
Viewed by 174
Abstract
The direct oxidation of methane to methanol is considered challenging due to the intrinsically low reactivity of the C–H bond of methane and the formation of a large number of unstable intermediates (methanol, formaldehyde, and formic acid) relative to the yield of methane. [...] Read more.
The direct oxidation of methane to methanol is considered challenging due to the intrinsically low reactivity of the C–H bond of methane and the formation of a large number of unstable intermediates (methanol, formaldehyde, and formic acid) relative to the yield of methane. However, promising advances have recently been reported in this area based on the use of electrochemical systems that differ from traditional thermal catalysis. In this review, the recent advances in direct and indirect electrochemical methane conversion with homogeneous catalysts are reviewed and discussed, especially under low-temperature conditions. Finally, the limitations of the current electrochemical methane conversion technology and future research directions are discussed. Full article
Show Figures

Graphical abstract

34 pages, 12422 KiB  
Review
Ultradurable Pt-Based Catalysts for Oxygen Reduction Electrocatalysis
Catalysts 2024, 14(1), 57; https://doi.org/10.3390/catal14010057 - 12 Jan 2024
Viewed by 154
Abstract
An oxygen reduction reaction (ORR) is the key half reaction of proton exchange membrane fuel cells (PEMFCs), and is highly dependent on Pt-based nanocrystals as core electrocatalysts. Despite the exceptional ORR activity from adjusting the electronic structures of surface or near-surface atoms, several [...] Read more.
An oxygen reduction reaction (ORR) is the key half reaction of proton exchange membrane fuel cells (PEMFCs), and is highly dependent on Pt-based nanocrystals as core electrocatalysts. Despite the exceptional ORR activity from adjusting the electronic structures of surface or near-surface atoms, several serious issues, including the corrosion of carbon supports, the preferential leaching of active metal elements, the instability of surface low-coordinated atoms and the sintering/agglomeration of nanocrystals, still exist, challenging the ORR durability of developed Pt-based ORR catalysts. From the point of view of the catalyst structure design, in this review, we summarized the state-of-the-art structural regulation strategies for improving the ORR durability of Pt-based catalysts. The current limitation of Pt-based binary catalysts for ORR electrocatalysis is firstly discussed, and the detailed strategies are further classified into the optimization of supports, metal-doped alloys, core/shell structures, intermetallics and high-entropy alloys, etc. The structure–performance relationship is detailedly explained, especially emphasizing the elimination of the above restrictions. Finally, the existing challenges and future research direction are further presented, aiming at practicing the PEMFC devices of the ultradurable Pt-based catalysts. Full article
(This article belongs to the Special Issue Noble Metal-Based Nanomaterials for Heterogeneous Catalysis)
Show Figures

Graphical abstract

20 pages, 9271 KiB  
Article
Increasing Al-Pair Abundance in SSZ-13 Zeolite via Zeolite Synthesis in the Presence of Alkaline Earth Metal Hydroxide Produces Hydrothermally Stable Co-, Cu- and Pd-SSZ-13 Materials
Catalysts 2024, 14(1), 56; https://doi.org/10.3390/catal14010056 - 12 Jan 2024
Viewed by 229
Abstract
Replacing alkaline for alkaline-earth metal hydroxide in the synthesis gel during the synthesis of siliceous SSZ-13 zeolite (Si/Al~10) yields SSZ-13 with novel, advantageous properties. Its NH4-form ion-exchanges higher amount of isolated divalent M(II) ions than the conventional one: this is the [...] Read more.
Replacing alkaline for alkaline-earth metal hydroxide in the synthesis gel during the synthesis of siliceous SSZ-13 zeolite (Si/Al~10) yields SSZ-13 with novel, advantageous properties. Its NH4-form ion-exchanges higher amount of isolated divalent M(II) ions than the conventional one: this is the consequence of an increased number of Al pairs in the structure induced by the +2 charge of Sr(II) cations in the synthesis gel that force two charge-compensating AlO4 motives to reside closer together. We characterize the +2 state of Co(II) ions in these materials with infra-red spectroscopy and X-ray absorption spectroscopy measurements and show their utility for NOx pollutant adsorption from ambient air: the ones derived from SSZ-13 with higher Al pair content contain more isolated cobalt(II) and, thus, perform better as ambient-air NOx adsorbers. Notably, Co(II)/SSZ-13 with an increased number of Al pairs is significantly more hydrothermally stable than its NaOH-derived analogue. Loading Pd(II) into Co-SSZ-13(Sr) produces an active NOx adsorber (PNA) material that can be used for NOx adsorption from simulated diesel engine exhaust. The critical issue for these applications is hydrothermal stability of Pd-zeolites. Pd/SSZ-13 synthesized in the presence of Sr(OH)2 does not lose its PNA capacity after extremely harsh aging at 850 and 900 °C (10 h in 10% H2O/air flow) and loses only ~55% capacity after hydrothermal aging at 930 °C. This can be extended to other divalent metals for catalytic applications, such as copper: we show that Cu/SSZ-13 catalyst can survive hydrothermal aging at 920 °C without losing its catalytic properties, metal dispersion and crystalline structure. Thus, we provide a new, simple, and scalable strategy for making remarkably (hydro)thermally stable metal-zeolite materials/catalysts with a number of useful applications. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials II)
Show Figures

Figure 1

12 pages, 5195 KiB  
Article
Preparation of Ordered Macroporous ZIF-8-Derived Magnetic Carbon Materials and Its Application for Lipase Immobilization
Catalysts 2024, 14(1), 55; https://doi.org/10.3390/catal14010055 - 12 Jan 2024
Viewed by 204
Abstract
Metal–organic framework materials (MOFs) and their derivatives are considered ideal immobilization carrier materials because of their large specific surface area, high porosity and excellent structural designability. Among them, ZIF-8 has great potential for immobilization of enzymes due to mild synthesis conditions, and good [...] Read more.
Metal–organic framework materials (MOFs) and their derivatives are considered ideal immobilization carrier materials because of their large specific surface area, high porosity and excellent structural designability. Among them, ZIF-8 has great potential for immobilization of enzymes due to mild synthesis conditions, and good biocompatibility. However, conventional ZIF-8 crystals have poor separation and recovery efficiency due to their small pore size and poor acid stability, greatly limiting their application in enzyme immobilization and further application. Although the carbonization of ZIF-8 by pyrolysis has been shown to be one of the approaches that can enhance its chemical stability, this still does not effectively solve the problem of the difficulty of recycling. Herein, we developed a strategy of pre-carbonization immersion (immersion in aqueous FeSO4 solution before carbonization) to synthesize ordered macroporous ZIF-8-derived carbon materials with stable ferromagnetism (denoted as CZ-x-M-y, where x denotes the carbonization temperature and y denotes the concentration of the impregnated FeSO4 solution) and used them to immobilize lipases for biodiesel production. XRD analysis showed that the magnetic properties in the materials came from Fe3C species. We found that the magnetic carbon materials obtained by carbonization at 600 °C showed the best immobilization effect, where CZ-600-M-0.3 (using 0.3 mol·L−1 FeSO4 aqueous solution to soak ZIF-8 and carbonized at 600 °C) had the highest enzyme loading of 183.04 mg·g−1, which was 49.7% higher than that of the non-magnetic CZ-600. In addition, CZ-600-M-0.5 maintained the highest enzyme activity, which was 81.9% of the initial activity, after five batches of reuse. The stable magnetic support materials reported in this study have promising potential for the industrial application of immobilized lipase. Full article
Show Figures

Graphical abstract

13 pages, 8315 KiB  
Article
Nanodiamond Supported Ultra-Small Palladium Nanoparticles as an Efficient Catalyst for Suzuki Cross-Coupling Reactions
Catalysts 2024, 14(1), 53; https://doi.org/10.3390/catal14010053 - 12 Jan 2024
Viewed by 319
Abstract
A nanocatalyst comprising ultra-small palladium nanoparticles supported on nanodiamonds (ultra-small Pd/rNDs) was fabricated via a reduction of palladium (II) salt on oxidized nanodiamond. The prepared catalyst was characterized using XRD, XPS, ICP-MS, AAS, and TEM/HRTEM techniques, including STEM-EDS chemical mapping, which revealed that [...] Read more.
A nanocatalyst comprising ultra-small palladium nanoparticles supported on nanodiamonds (ultra-small Pd/rNDs) was fabricated via a reduction of palladium (II) salt on oxidized nanodiamond. The prepared catalyst was characterized using XRD, XPS, ICP-MS, AAS, and TEM/HRTEM techniques, including STEM-EDS chemical mapping, which revealed that the modified material is a combination of reduced nanodiamond decorated with palladium nanoparticles. The as-prepared and well-characterized ultra-small Pd supported on rNDs displayed superb catalytic activity for Suzuki–Miyaura cross-coupling reactions at low temperature without any toxic solvents, to obtain the respective products in good-to-excellent yields (75–98%). The catalyst was easily separated from the reaction solution and was reused four times without loss of catalytic activity or chemical stability. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Figure 1

22 pages, 5605 KiB  
Article
A Kinetic Model of Furfural Hydrogenation to 2-Methylfuran on Nanoparticles of Nickel Supported on Sulfuric Acid-Modified Biochar Catalyst
Catalysts 2024, 14(1), 54; https://doi.org/10.3390/catal14010054 - 11 Jan 2024
Viewed by 245
Abstract
Lignocellulosic biomass can uptake CO2 during growth, which can then be pyrolysed into three major products, biochar (BC), syngas, and bio-oil. Due to the presence of oxygenated organic compounds, the produced bio-oil is not suitable for direct use as a fuel and [...] Read more.
Lignocellulosic biomass can uptake CO2 during growth, which can then be pyrolysed into three major products, biochar (BC), syngas, and bio-oil. Due to the presence of oxygenated organic compounds, the produced bio-oil is not suitable for direct use as a fuel and requires upgrading via hydrodeoxygenation (HDO) and hydrogenation. This is typically carried out over a supported metal catalyst. Regarding circular economy and sustainability, the BC from the pyrolysis step can potentially be activated and used as a novel catalyst support, as reported here. A 15 wt% Ni/BC catalyst was developed by chemically modifying BC with sulfuric acid to improve mesoporous structure and surface area. When compared to the pristine Ni/BC catalyst, sulfuric activated Ni/BC catalyst has excellent mesopores and a high surface area, which increases the dispersion of Ni nanoparticles and hence improves the adsorptive effect and thus catalytic performance. A liquid phase hydrogenation of furfural to 2-methylfuran was performed over the developed 15 wt% Ni/BC catalyst. Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic type models for adsorption of dissociative H2 were screened based on an R2 value greater than 99%, demonstrating that the experimental data satisfactorily fit to three plausible models: competitive (Model I), competitive at only one type of adsorption site (Model II), and non-competitive with two types of adsorption sites (Model III). With a correlation coefficient greater than 99% between the experimental rates and the predicted rate, Model III, which is a dual-site adsorption mechanism involving furfural adsorption and hydrogen dissociative adsorption and surface reaction, is the best fit. The Ni/BC catalyst demonstrated comparative performance and significant cost savings over previous catalysts; a value of 24.39 kJ mol−1 was estimated for activation energy, −11.43 kJ mol−1 for the enthalpy of adsorption for H2, and −5.86 kJ mol−1 for furfural. The developed Ni/BC catalyst demonstrated excellent stability in terms of conversion of furfural (96%) and yield of 2-methylfuran (54%) at the fourth successive experiments. Based on furfural conversion and yield of products, it appears that pores are constructed slowly during sulfuric acid activation of the biochar. Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass to Chemicals)
Show Figures

Graphical abstract

Back to TopTop